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1 Introduction

In this paper we analyze how the optimal tax system should be designed in order
to reduce income inequality or income polarization. For this purpose we adopt a
non-welfarist approach and consider a piecewise linear tax system.
In line with Kanbur et al. (2006) a government is said non-welfarist if its social

welfare function is de�ned over individuals�incomes instead of their utilities. Indi-
vidual preferences still play a role in the design of an optimal tax system in that
they shape the reaction in terms of consumption and labour supply of the individ-
uals to di¤erent tax schemes, but do not play a direct role into the social welfare.
In particular, we assume that the non-welfarist government maximizes, given a rev-
enue requirement constraint, a rank-dependent social evaluation function de�ned over
individuals�incomes. According to this social evaluation function, incomes are ag-
gregated linearly and are weighted according to their position in the income ranking.
By suitable modi�cations of the positional weighting function, it is possible to move
within the same social evaluation model from evaluations based on inequality to those
relying on the polarization of the incomes. Our focus on non-welfarist objectives of
the government is not motivated by the fact that we regard them as superior with re-
spect to the standard social welfare function: we do not take any stand in the debate
between welfarist and non-welfarist approaches to social justice. As Kanbur et al.
(1994) and Kanbur et al. (2017), we simply think that the study of non-welfarist op-
timal taxation is interesting because, in many instances, the policy debate is de facto
centred more around income redistribution than around utilities and social welfare.
In our analysis we focus on three brackets piecewise linear tax systems. We regard

the study of an optimal piecewise linear tax as particularly relevant, since this tax
schedule is the most commonly adopted in practice. We restrict our attention to
the case where only three brackets are present, because, as we will show later, a tax
scheme with three brackets is the minimal set-up needed to highlight the di¤erent
implications of the two social objectives we consider, i.e. inequality reduction and
polarization reduction.
We show that, when the goal of the government is to reduce inequality, the optimal

tax system is mainly convex exhibiting increasing marginal tax rates. When the
objective is the reduction of polarization, the optimal tax scheme is non-convex with
reduced marginal tax rate for the upper income bracket.
Our paper is obviously related to the literature on optimal income taxation. Many

analysis has been conducted in the welfarist tradition. We are here particularly
interested in those analysis that develop models of piecewise linear optimal taxation.
Sheshinski (1989) shows that the optimal piecewise linear tax system is convex in
the sense that higher tax rates are associated with higher income brackets. Slemrod
et al. (1994) argue that in his analysis Sheshinski ignored the discontinuity in the
tax revenue function and they use numerical simulation to show that the optimal tax
structure could be non-convex. Recently, Apps et al. (2014) show that, the results
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of Slemrod et al. (1994) are not robust to changes in the distribution of wages used
for the numerical analysis: they �nd that under assumptions that better describe the
current wage distribution, the tax system is essentially convex unless when labour
elasticities are high. Using a microeconometric model of labor supply, Aaberge et al.
(2013) also �nd that the optimal piecewise tax system is convex.
To the best of our knowledge, there are only few papers in the non-welfarist

tradition which deal with the issue of optimal taxation. In particular, Kanbur et al
(1994) and Kanbur et al (2017) study optimal income taxation when the objective of
the government is the reduction of poverty: while the �rst paper focuses on a fully
non-linear income tax, the second one considers the other extreme case, i.e. a linear
tax.
Our approach extends the existing literature on non-welfarist taxation, whose

focus has been poverty alleviation, by looking at inequality and polarization reduction
objectives. Moreover we consider the case of a piecewise linear tax function which is
intermediate between the two extremes of a fully non-linear and a linear tax schedule.
With respect to the welfarist literature on optimal piecewise linear taxation, we show
if and how the shape (convexity or non-convexity) of the tax function is a¤ected
by government�s objectives that di¤ers from the maximization of a standard social
welfare function de�ned over individual utilities.
The remainder of the paper proceeds as follows. Section 2 introduces the no-

tion of linear rank-dependent social evaluation function and describes the two di¤er-
ent weighting schemes adopted in the paper to capture inequality and polarization
reduction objectives. Section 3 formalizes the optimal tax problem faced by the
non-welfarist government. Section 4 presents some theoretical results under the as-
sumption of exogenous labor supply. The case of endogenous labor supply is analysed
in Section 5 through the use of numerical simulation. Section 6 concludes.

2 Rank-dependent social evaluation functions

In order to assess alternative taxation policies we consider the family of linear rank-
dependent evaluation functions that aggregate the net incomes of the individuals
weighting them according to the position in the income ranking.
Let F (y) denote the cumulative distribution function of income y of a population

with bounded support (0; ymax) and �nite mean � (F ) =
R ymax
0

y dF (y). The left
inverse continuous distribution function or quantile function, showing the income level
of an individual that covers position p 2 (0; 1) in the distribution of incomes ranked
in increasing order, is de�ned as F�1 (p) := inf fy : F (y) � pg. For expositional
purposes, in the remainder of the paper we will also equivalently denote with y (p)
the quantile function. The average income could then be calculated as � (F ) =R 1
0
F�1 (p) dp.
Consider a set of positional weights v (p) � 0 for p 2 [0; 1] such that V (p) =
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R p
0
v (t) dt, with V (1) = 1: A rank-dependent Social Evaluation Function [SEF] where

incomes are weighted according to individuals� position in the income ranking is
formalized as

W�(F ) =

Z 1

0

v (p)F�1 (p) dp (1)

where v (p) � 0 is the weight attached to the income of individual ranked p. The
normative basis for this evaluation function have been introduced in Yaari (1987) for
risk analysis and in Weymark (1982) and Yaari (1988) for income distribution analysis
and recently have been discussed as measures of the desirability of redistribution in
society by Bennett and Zitikis (2015).1 This representation model is dual to the
utilitarian additively decomposable model. According toW� the evaluation of income
distributions is based on the weighted average of incomes ranked in ascending order
and weighted according to their positions. Incomes are therefore linearly aggregated
across individuals and weighted through transformations of the cumulated frequencies
(the individuals�position).
The speci�c non-welfarist objective of the government can be formalized by the

particular form of the weighting function � (p). We consider two di¤erent non-
welfarist objectives that combine the average income evaluation with di¤erent dis-
tributional objectives, namely the reduction of inequality and the reduction of polar-
ization.
When taking into account inequality considerations the social evaluation can be

summarized by the mean income of the distribution � (F ) and a linear index of in-
equality Iv (F ) dependent on the choice of the weighting function v. This "abbreviated
form" of social evaluation2 is de�ned as

Wv(F ) = � (F ) [1� Iv (F )] :

For instance, by de�ning v (p) = � (1� p)��1 we can rewrite (1) as

W�(F ) =

Z 1

0

� (1� p)��1 F�1 (p) dp

which is the class of Generalized Gini SEF parameterized by � � 1 introduced by
Donaldson and Weymark (1983) and Yitzhaki (1983). The parameter � is a measure
of the degree of inequality aversion, for � = 1 we obtain the mean income � (F ) and
therefore inequality neutrality, while for � = 2 the SEF is associated with the Gini
index G (F ) and becomes as3

W2(F ) = � (F ) [1�G (F )] :
1See also Aaberge (2000), Aaberge et al. (2013) and Maccheroni et al. (2005).
2For general details see Lambert (2001).
3The single parameter family of relative Gini index of inequality parameterized by � is expressed

as G (F ) = 1
�(F )

R 1
0

h
1� � (1� p)��1

i
F�1(p)dp, which becomes the standard Gini coe¢ cient for

� = 2.
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The SEF could also be interpreted asW2(F ) = � (F )�� (F )G (F ) where � (F )G (F )
denotes the absolute version of the Gini index that is invariant with respect to addition
of the same amount to all individual incomes.

2.1 Weighting functions

2.1.1 Inequality sensitive SEFs

A non-welfarist government aimed at reducing inequality, once individual incomes are
ranked in ascending order, when expresses evaluations consistent with the Gini index
attaches to each quantile F�1 (p) of the income distribution a weight according to
the following function vG (p) = 2(1� p): These weights are linearly decreasing in the
position of the individuals moving from poorer to richer individuals. Alternatively
we can write these weights as

vG (p) =

�
1� [�2

�
1
2
� p
�
] if p � 1

2

1� 2
�
p� 1

2

�
if p � 1

2

: (2)

That is, to the weight 1 associated with the average income is subtracted the weight
associated to the absolute Gini index that captures the inequality concerns, this
weight is

wG (p) =

��2 �1
2
� p
�
if p � 1

2

2
�
p� 1

2

�
if p � 1

2

: (3)

With a "non-traditional" interpretation of the absolute Gini index, inequality could
be measured by considering the di¤erence between incomes covering equal positional
distance from the median weighted with linear weights that increase moving from
the median position = 1/2 to the extreme positions 0 and 1. For instance, take the
incomes that are either t positions above the median and t positions below the median,
the index considers the di¤erence between these incomes F�1

�
1
2
+ t
�
� F�1

�
1
2
� t
�

and weights it with the weight 2t. That is

� (F )G (F ) =

Z 1

1=2

2

����12 � p
����F�1 (p) dp� Z 1=2

0

2

����12 � p
����F�1 (p) dp:

The weights attached to the income di¤erences increase as the position of the individ-
uals moves away from the median position. In this case any rank-preserving transfer
of income from individuals above the median to poorer individuals below the median
reduces inequality in that it reduces the income distances between individuals cover-
ing symmetric positions with respect to the median. Rank-preserving transfers from
richer to poorer individuals positioned on the same side with respect to the median,
also reduce inequality because it increases the income di¤erence between the incomes
that are closer to the median and decreases of the same amount the income di¤erence
of the incomes that are in the tails of the distribution. However, the inequality index
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gives lower weight to the income di¤erences between individuals closer to the median
and therefore the e¤ect for the individuals that are more distant from the median is
dominant and inequality is reduced.
The next �gure shows the weighting function vG, and as we can see the weights at-

tached to the lowest and to the highest income are respectively equal to two and zero,
while the median income receives a weight equal to one. This equivalent representa-
tion of the SEF makes clear the positive social e¤ect of a progressive transfer from
richer to poorer individuals given that the incomes are transferred from individuals
with lower social weight to individuals with higher weight.

The weighting function for the Gini based SEF

2.1.2 Polarization sensitive SEFs

When the non-welfarist objective is the reduction of polarization, the distributive
concern is for reducing inequality between richer individuals and poorer ones but
not necessarily reducing the inequality within the rich and within the poor individ-
uals. In line with the seminal works of Esteban and Ray (1994) and Duclos et al.
(2004) the polarization measurement combines an isolation component that decreases
if the distance between richer and poorer individuals is reduced. The second relevant
component in the measurement of polarization is the identi�cation between the in-
dividuals belonging to an economic/social class. In the case of the measurement of
income bipolarization the two social groups are delimited by the median income. The
higher is the degree of identi�cation within each group the higher is the e¤ect of their
isolation on polarization. In this case the identi�cation decreases as more disperse is
the distribution within one group. Thus, reducing inequality between individuals that
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are on the same side of the median increases their identi�cation and then increases
the overall polarization.
We adopt here the bipolarization measurement model introduced in Aaberge and

Atkinson (2013).4 The associated SEF is rank-dependent with a weighting function
that can be formalized as:

vP(�;�) (p) =

�
1 + � (2p)��1 if p � 1

2

1� � (2� 2p)��1 if p � 1
2

: (4)

Where � � 0 quanti�es the relative relevance of polarization with respect to the
average income in the overall social evaluation. Moreover � � 1 is a measure of
the relative sensitivity of polarization to changes in incomes that occurs at di¤erent
positions p around the median. For � = 1 and � = 2 the weights vP (p) are linear
and increasing,

vP (p) =

�
2p+ 1 if p � 1

2

2p� 1 if p � 1
2

: (5)

We focus primarily on this weighting function as it constitutes the counterpart of
the Gini weighting function for the (bi-)polarization measures. The shape of the
weighting function in (5) is illustrated in the following �gure.

The weighting function for the Polarization based SEF.

The weights are linearly increasing both below and above the median and exhibit
a jump at the median, with higher weights below the median and lower above the
median.

4An alternative approach to the construction of polarization sensitive SEFs is presented in Ro-
driguez (2015).

7



It is also possible to derive an associated abbreviated SEF where polarization
reduces welfare for a given average income level

WP (F ) = � (F ) [1� P (F )]

with P (F ) denoting a polarization index. In the case of the linear polarization
measure we have that the polarization index can be derived from the condition

� (F )P (F ) = �
Z 1=2

0

2pF�1 (p) dp+

Z 1

1=2

2(1� p)F�1 (p) dp: (6)

In line with the formalization presented for inequality measurement, the SEF weight-
ing function can be formalized as

vP (p) =

�
1� f�[1� 2(1

2
� p)]g if p � 1

2

1� [1� 2(p� 1
2
)] if p � 1

2

: (7)

where the polarization component is subtracted from the weight 1 associated with
the average income. The polarization weight is therefore

wP (p) =

��[1� 2(1
2
� p)] if p � 1

2

[1� 2(p� 1
2
)] if p � 1

2

: (8)

The polarization index can then be formalized similarly to the inequality index, by
considering the di¤erence between the incomes with equal positional distance from the
median weighted with linear weights that decrease moving from the median position
where p = 1=2 to the extreme positions 0 and 1. For instance, for the incomes that
are either t positions above the median and t positions below the median, the index
considers the di¤erence between these incomes F�1

�
1
2
+ t
�
�F�1

�
1
2
� t
�
and weights

it with the weight 1� 2t. That is

� (F )P (F ) =

Z 1

1=2

�
1� 2

����12 � p
�����F�1 (p) dp� Z 1=2

0

�
1� 2

����12 � p
�����F�1 (p) dp:

The weights attached to the income di¤erences decrease linearly as the position of
the individuals moves away from the median position. This representation guarantees
that income transfers from richer to poorer individuals on the same side of the median
income increase polarization.5

An elementary normative implication of the polarization based welfare weighting
function is that in order to maximize the welfare, redistribution should be from the

5The construction of this family of polarization indices is also consistent with the rank-dependent
generalization of the Foster�Wolfson polarization measure (see Wolfson, 1994) presented in Wang
and Tsui (2000). The main di¤erence between the two approaches is that the Wang and Tsui paper
normalizes the index by dividing it by the median instead of the mean income.
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individuals above the median to those below. However, when tax schedules are set
over few brackets that are de�ned in terms of incomes and not positions, then the im-
plications arising from moving from an inequality reducing objective to a polarization
reducing one are more subtle.
From the two �gures above it appears evident that the two weighting functions

give more weight to individuals below the median with respect to those above the me-
dian. However, for inequality concerns the weight decreases for the individuals on the
same side of the median as their income increases, while it increases for polarization
concerns.
The associated non-welfarist objectives will lead to di¤erent pro�les of the income

taxation. Our aim is to see how the optimal tax formula changes according to the
choice of the weighting function.

3 Non-welfarist optimal piecewise linear taxation

In this section we formalize the optimal tax problem faced by a non-welfarist govern-
ment. The social evaluation function considered is a general rank-dependent function
W with generic non-negative positional weights v (p) with

Wv =

Z 1

0

v (p) [y (p)� T (y (p))] dp; (9)

where y (p) denotes the quantile function or the inverse of the income distribution.
Let p1 := supfp : y(p) = y1g and p2 := supfp : y(p) = y2g with y (p1) = y1 and
y (p2) = y2 denoting the two income thresholds of the considered tax system, where
F (y1) = p1 and F (y2) = p2. The tax function is denoted by T (y), where taxation is
non-negative. The per capita government budget constraint isZ 1

0

T (y (p)) dp = G

where G represents the per capita revenue requirement. We consider a three brackets
linear tax function, with T (y) de�ned as follows

T (y) :=

8<:
t1y
t1y1 + t2 (y � y1)
t1y1 + t2 (y2 � y1) + t3 (y � y2)

if y � y1
if y1 < y � y2
if y > y2

(10)

or in equivalent terms

T (y) := t1y + (t2 � t1) �max fy � y1; 0g+ (t3 � t2) �max fy � y2; 0g :

In our analysis we consider situations where the gross incomes are unequally dis-
tributed across individuals. Moreover, we will derive results that hold under the
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assumption of bounded maximal marginal tax rate whose admissible upper level is
�� 2 (0; 1]:
The social optimization problem requires to maximize Wv with respect to the

three tax rates ti with i = 1; 2; 3, and the two income thresholds y1 and y2 where
y1 < y2. As a result the �nal net incomes distribution could lead to con�gurations
where groups of individuals exhibit the same net income. These distributions could
substantially di¤er depending on whether the social objective is concerned about
reducing inequality or with reducing polarization.

4 The solution with �xed labour supply

The taxation design that is socially optimal is �rst illustrated under the assumption of
exogenous �xed labour supply. This �rst approach is in line with the literature on the
redistributive e¤ect of taxation pioneered by the works of Fellman (1976) Jakobsson
(1976) and Kakwani (1977).6 We derive the results for the three brackets piecewise
linear taxation in order to compare the e¤ects on taxation of an inequality reducing
sensitive SEF with the one of a polarization reducing sensitive SEF. Our aim will
be to maximize the social evaluation under the revenue constraint that collects the
per-capita value G:
The constrained optimization Lagrangian function for this problem is as follows

max
t1;t2;t3;y1;y2

L = Wv + �

�
G�

Z 1

0

T (y (p)) dp

�
; (11)

with ti 2 [0; 1] for i = 1; 2; 3; and y1 < y2:
The SEF Wv is presented in (9). As argued in the previous section the shape of

the positional social weights v (p) could make the SEF consistent with di¤erent distri-
butional objectives, and in particular it could be made sensitive to either inequality
or polarization reduction concerns.
The derivation of the solutions for the constrained optimization problem are il-

lustrated in details in Appendix A both for inequality sensitive and for polarization
sensitive SEFs. Here we summarize and comment the main �ndings.

4.1 Inequality concerns

We present here the qualitative features of the optimal taxation problem that hold for
any distribution of pre-tax gross income and for a large class of inequality sensitive
SEFs. Our results hold for piecewise linear three brackets tax functions whose upper
marginal tax rate is 100% and are generalized in order to consider maximal marginal
tax rates that could not exceed �� 2 (0; 1].

6See also the review in Lambert (2001).
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The family of SEFs considered is denoted by WI that represents the set of all
linear rank-dependent SEFs with decreasing non-negative weights v(p): These SEFs
are sensitive to inequality reducing transformations of the distributions through rank-
preserving progressive transfers from richer to poorer individuals. For instance, the
Gini based social weighting function in (2) satis�es this condition.
Let T�� denote the set of all piecewise linear taxation schemes with three brackets

with maximal marginal tax rate �� 2 (0; 1].
We assume that the maximal marginal tax rate �� is s.t. G � �� � � (F ) we can

derive the statement highlighted in the next proposition.

Proposition 1 A solution of the optimal taxation problem with �xed labour supply
for tax schedules in T�� maximizing linear SEFs in WI is

t1 = 0;

t3 = t2 = �� ;

with y1 s.t. the revenue constraint is satis�ed:

A more detailed speci�cation of the above proposition is illustrated and proved in
Appendix A as Proposition 4.
All the SEF in WI are maximized under the revenue constraint by the taxation

schemes presented in Proposition 1. Thus only two income brackets are required to
derive the result. Many equivalent taxation schemes could solve the optimization
problem. In fact the scheme presented is not a¤ected by the choice of y2 > y1;
moreover an equivalent scheme could be derived where t3 = �� ; t1 = t2 = 0 and the
relevant income threshold is y2:
To summarize, the optimal taxation problem involves the maximal admissible

proportional tax burden in the higher bracket and no taxation for bottom incomes.
When �� = 100% then the solution involves reducing to y1 all incomes that are above
this value.
This result holds not only for the SEFs inWI but could be shown to hold for any

strictly inequality averse social evaluation function not necessarily belonging to the
family of those that are linearly rank-dependent.
In fact it is well known that all such social evaluation functions for comparisons

of distributions with the same average income are consistent with the partial order
induced by the Lorenz curve or equivalently by the criterion of second order stochastic
dominance (see Atkinson 1970, and Lambert 2001). The result in Proposition 1
could then be generalized to all social evaluation functions that are consistent with
the Principle of Transfers, that is are such that any income transfer from a richer
individual to a poorer one does not decrease the social evaluation of the distribution.
In mathematical terms these functions are Schur-concave [see Dasgupta, Sen and
Starrett 1973 and Marshall et al. 2011]. We provide here the generalization of the
result in Proposition 1. Its proof is obtained following a di¤erent strategy than the
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one adopted for the proof of Proposition 1. We present both proofs because the
one of Proposition 1 allows more direct comparisons with the results that will be
presented for SEFs that are polarization sensitive. To derive the desired result we
also consider a larger set of tax functions that include T�� : We denote by T�� the set
of all non-negative and non-decreasing taxation schemes with maximal marginal tax
rate �� 2 (0; 1]; that is all tax functions such that T (y) � 0 and �� � T (y)�T (y0)

y�y0 � 0 for
all y; y0 such that y > y0:

Proposition 2 The solution of the optimal taxation problem with �xed labour supply
involving tax schedules in T�� maximizing all the Schur-Concave evaluation functions
of the post-tax income distribution obtained under a given revenue constraint involves
a two brackets linear taxation scheme where

t1 = 0; and t2 = �� ;

with y1 s.t. the revenue constraint is satis�ed:

Proof. Dominance of the tax scheme presented in the proposition over all alter-
native schemes in T�� that satisfy the revenue constraint for all social evaluation
functions that are Schur-Concave requires to check that the obtained post-tax net
income distribution dominates in terms of Lorenz any of the alterative post-tax
distributions [see Marshall et al. 2011]. That is, let T 0 denote the optimal tax
function then the Lorenz curve of the post tax income distribution is obtained as
LT 0(p) =

1
�T0

R p
0
[y (q)� T 0 (y (q))] dq where �T 0 =

R 1
0
[y (q)� T 0 (y (q))] dq denotes

the average post-tax net income under taxation T 0.
It then follows that Lorenz dominance of this tax scheme over all alternative

schemes T in T�� requires that LT 0(p) = 1
�T0

R p
0
[y (q)� T 0 (y (q))] dq � LT (p) =

1
�T

R p
0
[y (q)� T (y (q))] dq for all T 2 T�� and all p 2 [0; 1]: Recalling that all the

alternative tax schemes should guarantee the same revenue, the condition could be
simpli�ed as

R p
0
[y (q)� T 0 (y (q))] dq �

R p
0
[y (q)� T (y (q))] dq; that is after simplify-

ing for y (q) we obtain Z p

0

T 0 (y (q)) dq �
Z p

0

T (y (q)) dq (12)

for all T 2 T�� and all p 2 [0; 1]; where by construction the revenue constraint requires
that

R 1
0
T 0 (y (q)) dq =

R 1
0
T (y (q)) dq = G:

Recall that by construction (i) T 0 (y (p)) = 0 for all p � p1; and that (ii) �� =
T 0(y)�T 0(y0))

y�y0 � T (y)�T (y0))
y�y0 for all y > y0 and all T 2 T�� : By combining the conditions

(i) and (ii) and the revenue constraint condition it follows that T 0 (y (p)) � T (y (p))
for all p � p1 (with strict inequality for some p); T 0 (y (1)) > T (y (1)) and the tax
schedule T 0 (y) crosses once each schedule T (y) from below:
As a result the condition in (12) holds for all T 2 T�� and all p 2 [0; 1]:
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The above results could also be interpreted in term of progressivity comparisons
of the alternative tax schemes considered. It clari�es that the tax scheme in the
proposition is the more progressive among all tax schemes that guarantee the same
revenue (see, Keen et al, 2000 and references therein, and Lambert 2001 Ch. 8). The
result shows that the Lorenz curve of tax burden under the taxation scheme considered
is more unequal (and then more disproportional) in terms of Lorenz dominance than
the one of any alternative tax scheme in T�� giving the same revenue as originally
suggested in Suits (1977) as a criterion to assess the progressivity of a tax schedule.

4.2 Polarization concerns

We now move to consider polarization sensitive linear rank-dependent SEFs where
v(p) is increasing below the median and above the median and weights are larger in
the �rst interval than in the second with v(0) = v(1) = 1 and limp!1=2� v(p) = 2 6=
limp!1=2+ v(p) = 0 as for the polarization P index illustrated in the previous section.
We denote with WP the set of all these SEFs.
In order to specify the solution we need to consider two hypothetical two brackets

tax schemes with marginal tax rates t1 and t2 and whose threshold between the two
brackets is set at the median income level y (1=2) = yM . Under the �rst tax scheme
the �rst bracket is not taxed, that is t1 = 0; and the second bracket is taxed at the
maximal tax rate t2 = �� :We denote with G+ the revenue arising from such taxation.
Under the second tax scheme the �rst bracket is taxed at the maximal tax rate t1 = �� ;
while the second bracket exhibits zero marginal tax rate (t2 = 0) and so all the income
recipients above the median are taxed with a lump-sum tax equal to ��yM :We denote
with G� the revenue arising from this latter taxation scheme. We can now formalize
the results in next proposition.

Proposition 3 The solution of the optimal taxation problem with �xed labour supply
for tax schedules in T�� maximizing linear SEFs in WP is:
(i) p1 < 1=2 < p2 where

1�VP (p1)
1�p1 = 1�VP (p2)

1�p2 and such that the revenue constraint
is satis�ed with

t1 = t3 = 0;

t2 = �� ;

if G � minfG+; G�g.
(iia) If G > G+ solution (i) should be compared with p1 < 1=2; and

t1 = 0;

t2 = t3 = ��

where p1 [and so also y1] is such that the revenue constraint is satis�ed
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(iib) If G > G� solution (i) should be compared with p1 > 1=2; and

t1 = �� ;

t2 = t3 = 0;

where p1 [and so also y1] is such that the revenue constraint is satis�ed:
(iii) If G > maxfG+; G�g all three solutions (i), (iia) and (iib) should be com-

pared.

A more detailed speci�cation of the above proposition is illustrated and proved in
Appendix A as Proposition 5.
The proposition highlights the fact that under standard revenue requirements

G � minfG+; G�g the marginal tax rate is maximal within the central bracket that
includes the median income, while for very large revenue requirements maximal mar-
ginal tax rates are applied in the tail brackets. However, note that solution (iib)
involves also a lump-sum taxation for the individuals in the higher bracket. While
solution (iia) coincides with the optimal solution for inequality sensitive SEFs. In all
cases the median income is subject to the maximal marginal tax rate. It should be
pointed out that solution (i) is under associated to a local maximum of the optimiza-
tion problem under any condition on the level of revenue. While solution (i) always
exists, as also highlighted in the proof of the proposition, solutions (iia) and (iib) may
lead to local maxima and the conditions G > G+ and G > G� are only necessary for
this result and in any case they need to be compared with solution (i).
The comparison between the results in Proposition 1 and Proposition 3 highlights

the striking role of the distributive objective in determining the qualitative shape
of the optimal taxation scheme. While for inequality sensitive SEFs the optimal
scheme considers increasing marginal tax rates, for the polarization sensitive SEFs it
requires to tax heavily the "middle class". These two results act as benchmarks for
the analysis of optimal taxation with variable labour supply developed in the next
section.

5 The solution with variable labour supply

In this section we �rst describe the agents optimization problem, then we provide nu-
merical results about the optimal tax schedule reducing income inequality and income
polarization, with �xed and elastic labor supply. Here we assume that redistribution
is not allowed and the focus is on the socially desirable mechanism that ensures to
collect a given level of per-capita revenue.
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5.1 The agents optimization problem

Agents make labour supply decisions based on the constrained optimization of the
quasi-linear utility function

U(x; l) = x� �(l)
where x 2 R denotes net disposable income/consumption and l 2 [0; L] denotes
labour supply. The function � : [0; L] ! R is continuous, convex and increasing in l
with �0(0) = 0 where �0 denotes the marginal disutility of labour. The utility function
could also be expressed in terms of disposable income and leisure `; where ` = L� l:
In this case given the above assumptions the function is strictly quasi-concave in x
and `.
We will consider an utility speci�cation where � is isoelastic, taking the form

�(l) = k � l� (13)

with � > 1; k > 0:
Each agent is endowed with a productivity level formalized by the exogenous wage

w > 0: The agents in the economy earn a gross income y � 0 obtained only through
labour supply, that is y = wl: Agents are subject to taxation T (y) � 0 formalized
by (10); that leads to the net disposable income, considered in their utility function,
obtained as x = y � T (y):
Quasi linearity of the utility function rules out income e¤ects in agents decisions

and allows to focus only on substitution e¤ects on labour supply.
We can equivalently re-express the problem in the space (x; y) for each agent. In

this case the utility function becomes

u(x; y) = U(x; y=w) = x� �(y=w)

and the relation between x and y is

x := y � T (y) =

8<:
(1� t1)y if y 2 Y1 � [0; y1)
(t2 � t1)y1 + (1� t2)y if y 2 Y2 � [y1; y2)
(t2 � t1)y1 + (t3 � t2)y2 + (1� t3)y if y 2 Y3 � [y2;1)

: (14)

Where Yi denotes the income set associated to the ith income bracket. The set Y nyi�1
will instead denote the set Yi net of its lower element yi�1; where y0 = 0:
The marginal rate of substitution between y and x is MRSyx = �

0(y=w)=w: For
levels of gross income that do not coincide with the thresholds y1 < y2 it should hold
that MRSyx = (1� ti) when y 2 Yi: That is

y� = w � �0�1 [(1� ti)w]

when y� 2 Yinyi�1; where the function �0�1(:) by construction is positive and strictly
increasing. Given the de�nition of y = wl; one obtains also the associated optimal
labour supply

l� = [(1� ti)w]
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when wl� 2 Yinyi�1:
Given the assumptions, y� and l� are continuous and strictly increasing w.r.t. w

within the sets Yinyi�1:
We consider now in details the issues when �(l) = k � l� with � > 1:Thereby

leading to

y� = w �
�
(1� ti)w
k�

� 1
��1

= w
�

��1

�
(1� ti)
k�

� 1
��1

(15)

l� =

�
(1� ti)w
k�

� 1
��1

when y� 2 Yinyi�1: Note that within the sets Yinyi�1 the elasticity " of labour supply
w.r.t. the wage is constant and equals 1

(��1) :
7In this paper we will consider as a

reference distribution the gross income distribution in absence of taxation. Then,

by setting ti = 0 from (15) we obtain y� = w
�

��1
�
1
k�

� 1
��1 and l� =

�
w
k�

� 1
��1 : Let

w (p) denote the gross wage of the individual in position p 2 [0; 1] in the distribution
of gross wages ranked in non-decreasing order. Then, the following monotonically
increasing transformation of the wage

y (p) := w (p)
�

��1

�
1

k�

� 1
��1

= w (p)1+"
�

"

k ("+ 1)

�"
(16)

represents the gross income of the individual covering position p under the assumption

of no-taxation, with the associated labor supply l (p) =
h
w(p)
k�

i 1
��1

=
h
w(p)"
k("+1)

i"
: The

gross income distribution in absence of taxation, formalized by the quantile (or inverse
distribution) function y (p) ; is the reference distribution in our analysis.
In order to simplify the exposition, and in line with the results obtained with �xed

labour supply we focus only on tax schedules where t1 � t2; and assume two possible
regimes, i.e. convex (case A) and non-convex (case B) of tax rates depending on the
ranking of t2 and t3. Case A, is such that t1 � t2 � t3; while case B considers the
con�guration where t1 � t3 < t2:
Depending on what case is considered we could either have as in case A that some

agents experience the same gross income coinciding with one of the thresholds y1 and
y2; or as under case B that this could happen for y1 while around y2 the map of y�

w.r.t. w is discontinuous, but still increasing.
To simplify the exposition in the next two subsections we express the gross income

distribution in terms of intervals of quantiles y (p), while in the Appendix B we show
the gross income distribution also in terms of wages intervals.

7In the case with �xed labor supply elasticity is set equal to zero, hence labor supply reduces to
one and gross incomes and wages coincide.
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5.1.1 Case A: t1 � t2 � t3
Under case A the above optimality conditions hold if yi�1 < y� < yi that is, if

yi�1
(1� ti�1)"

< y (p) <
yi

(1� ti)"

for i 2 f1; 2; 3g where y3 = +1: The three sets of values can then be expressed in
terms of intervals of gross incomes such that

0 < y (p) <
y1

(1� t1)"
;

y1
(1� t2)"

< y (p) <
y2

(1� t2)"
;

y2
(1� t3)"

< y (p) :

Note that by construction it follows that
h

yi
(1�ti)"

i
<
h

yi
(1�ti+1)"

i
, and therefore we

obtain:

yt (p) =

8>>>>><>>>>>:

y (p) (1� t1)" if y (p) < y1
(1�t1)"

y1 if y1
(1�t1)" � y (p) �

y1
(1�t2)"

y (p) (1� t2)" if y1
(1�t2)" < y (p) �

y2
(1�t2)"

y2 if y2
(1�t2)" � y (p) �

y2
(1�t3)"

y (p) (1� t3)" if y (p) > y2
(1�t3)"

(17)

where yt (p) denotes the post tax gross income of an individual that covers position
p in the distribution of y (p) :

5.1.2 Case B: t1 � t3 � t2
Under case B (non-convex regime) we assume that the optimal labour supply and
gross income are the same for all incomes that are in the �rst bracket and at the �rst
threshold, the result changes for the income levels in the second and third brackets.
In particular, if t2 > t3 then there exists a threshold level by in the gross income
distribution such that all incomes above by are such that y 2 Y3ny2; while all incomes
below are such that y 2 Y2ny1: Appendix B illustrates the derivation of by that is

by := (1 + ") (t2 � t3) y2
(1� t3)(1+") � (1� t2)(1+")

with t2 > t3, while if t2 ! t3 then by = y2
(1�t2)" . It follows that

yt (p) =

8>>><>>>:
y (p) (1� t1)" if y (p) < y1

(1�t1)"

y1 if y1
(1�t1)" � y (p) <

y1
(1�t2)"

y (p) (1� t2)" if y1
(1�t2)" � y (p) � by

y (p) (1� t3)" if y (p) > by
(18)
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where the after tax gross income yt (p) is discontinuous at y (p) = by:
The presentation of the further case where the optimal labour supply choice is

such that after tax no gross incomes belong to the second income bracket is discussed
in Appendix B.

5.2 Numerical results

The optimal taxation problem described in the previous section is solved numerically.8

To this end, we need to assign a value to the parameters � and k of the utility function
(13) and to specify the distribution �w of individual wages and the exogenous revenue
requirement G.
The parameter � determines the wage elasticity " of labor supply, which is constant

throughout the entire wage distribution and equal to 1
(��1) . The parameter k is a scale

parameter which is set equal to 1=�. We simulate the model for three di¤erent values
of ", i.e. 0.1, 0.2, 0.5, and accordingly we set � respectively equal to 11, 6 and 3.9

For a given distribution of wages, di¤erent values of " have two e¤ects: �rst they
impact on the distribution of gross income in the absence of taxation; second they
determine how this distribution reacts to the tax system. We want to get rid of
the �rst e¤ect in order to focus on how the optimal tax structure is a¤ected by the
strength of the agents� reaction to the tax system. Accordingly, when " changes,
we keep the distribution of gross income in the absence of taxation constant, by an
appropriate rescaling of the wage distribution. This constant distribution of gross
income in the absence of taxation is chosen to be equal to the distribution implied
by a wage elasticity " that tends to zero.10 In turn, given that " tends to zero, it is
possible to show that such a distribution is equal to the distribution of wages. With
regard to this wage distribution we assume that it is a Pareto distribution, as in Apps
et al. (2014), Andrienko et al. (2016), and Slack (2015). More speci�cally, we follow
Apps et al. (2014) and consider a truncated Pareto distribution, with mean � and
median m respectively equal to 48.07 and 32.3, and wages ranging from 20 to 327.11

8We use a grid search method. More speci�cally, we de�ne the grids for t1; t2; y1 and y2, with
t1 � t2 and y1 � y2: For each combination of these policy parameters we compute the value of
t3 which keeps the government budget constraint balanced and then we compute the value of the
social evaluation function. Last, we identify the combination of policy parameters that delivers the
highest value of the social evaluation function.

9The values of the labor supply elasticity we consider are broadly consistent with the empirical
estimates provided by the literature (see Giertz 2004, Meghir and Philips 2008, Saez, Slemrod and
Giertz 2009 and Creedy 2009).
10Given a reference distribution �̂w of wages, an " that tends to zero and the implied gross income

distribution �̂y, it is possible to show that the distribution of income is equal to �̂y even when the
" is positive if all wages are raised to the power of (1 + ") (see equation (15) and set t = 0 and
k = 1=�).
11The cdf of a Pareto distributed variable x is F (x) = 1 �

�
L
x

��
, where L is a scale parameter,

denoting the lowest value of the distribution, while the coe¢ cient � > 1 represents the Pareto index,
which is a measure of the degree of inequality within the distribution. As in Apps et al. (2014)
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Finally we consider di¤erent values of the exogenous revenue requirement G,
namely we alternatively set G equal to 10%, 15%, 20%, 25% of the average gross
income computed in the absence of taxation.
As to the tax system, we assume two di¤erent regimes (convex and non-convex)

depending on the ranking between t2 and t3. The convex tax regime is such that
t1 � t2 � t3, while the non-convex tax regime considers the con�guration where
t1 � t3 � t2. We always assume that there is an upper limit �� to the value of the
marginal tax rates and we set �� = 50%.
Before we present the results of the simulations for the values of " > 0 mentioned

above, we report in Table 1 the optimal values of the policy parameters in the case
in which " tends to zero and accordingly labor supply is �xed. The Table provides a
quantitative illustration of the theoretical analysis that has been performed in Section

(case (1:a)), we assume L=20, � = 1:4 and we truncate the distribution at the 98th percentile which
corresponds to a value of 327.
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4.

Table 1. Optimal tax systems with �xed labor supply

Panel A: Gini Social Evaluation Function.
Initial social welfare: 30.21, Inequality before taxes: 0.37.

G t1 t2 t3 y2 y2 WG

0:1� � 0 0 50%
66:07
0:83

66:07
0:83

29:83

0:15� � 0 0 50%
45:02
0:69

45:02
0:69

29:27

0:2� � 0 0 50%
32:66
0:51

32:66
0:51

28:31

0:25� � 0 0 50%
24:68
0:26

24:68
0:26

26:85

Panel B: Polarization Social Evaluation Function.
Initial social welfare: 42.83, Polarization before taxes: 0.11.

G t1 t2 t3 y1 y2 WP

0:1� � 0 50% 0
27:5
0:37

52:00
0:75

39:75

0:15� � 0 50% 0
26:0
0:31

71:50
0:85

37:81

0:2� � 0 50% 0
24:25
0:25

106:50
0:92

35:62

0:25� � 0 50% 0
22:5
0:15

171:50
0:97

33:40

Note. The two values reported in the columns y1 and y2

express the thresholds in terms of the level of income and

the associated percentile in the income distribution.

More speci�cally panel A illustrates the �rst two propositions, and shows that the
optimal tax system reducing income inequality, is such that there is a no-taxation
area (t1 = t2 = 0) until a given threshold (y1 = y2). Above this cuto¤, the tax rate is
set to its upper bound, i.e. (t3 = 50%) : The higher the amount of collected taxes

�
G
�

is, the lower is the income threshold and the no-taxation area. For example, when
the required revenue doubles from 10% to 20% of the average income, the fraction of
incomes falling in the taxation area increases from 17% to 50%, (compare rows 1 and
3 of panel A).
Simulation results panel B of Table 1 illustrate Proposition 3. The optimal tax

system aimed at reducing polarization, envisages a central bracket with the maximum
admissible tax rate and no taxation in the two external brackets. The median income
falls within this central bracket which widens as the amount of required tax revenue
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increases. For example, comparing the �rst and the fourth row of panel B, we see
that, when the amount of collected taxes increases, the fraction of people belonging
to the central bracket changes from about 40% to about 80%.
We now present the results of the simulations for positive values of the labor supply

elasticity. Tables 2A and 2B show the optimal policy aimed at reducing inequality
both under the convex and the non-convex tax regime.

Table 2A. Optimal convex tax-system: Gini based SEF.

G " t1 t2 t3 y1 y2 W

0:1� � 0:1 0 18% 49:9%
55:00
0:78

60:00
0:82

29:57

0:15� � 0:1 0 9% 49:85%
35:00
0:56

40:00
0:67

28:65

0:2� � 0:1 0 18% 49:79%
25:00
0:29

30:00
0:49

27:06

0:25� � 0:1 6% 7% 49:97%
20:00
0:01

25:00
0:34

24:79

0:1� � 0:2 0 39% 49:8%
50:00
0:77

55:00
0:82

29:23

0:15� � 0:2 0 10% 49:89%
30:00
0:46

35:00
0:64

27:80

0:2� � 0:2 2% 42% 49:91%
25:00
0:38

30:00
0:54

25:47

0:25� � 0:2 12% 42% 49:87%
25:00
0:38

30:00
0:54

22:91

0:1� � 0:5 1% 36% 43:30%
35:00
0:68

40:00
0:76

27:39

0:15� � 0:5 9% 11% 42:43%
30:00
0:49

35:00
0:70

24:38

0:2� � 0:5 18% 34% 43:10%
35:00
0:67

40:00
0:76

21:32

0:25� � 0:5 27% 41% 44:29%
35:00
0:70

40:00
0:76

18:14
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Table 2B. Optimal non-convex tax-system: Gini based SEF.

G " t1 t2 t3 y1 y2 W

0:1� � 0:1 0 47% 46:34%
55:00
0:79

60:00
0:82

29:54

0:15� � 0:1 1% 49% 48:59%
40:00
0:67

45:00
0:72

28:47

0:2� � 0:1 2% 50% 49:83%
30:00
0:49

35:00
0:60

26:97

0:25� � 0:1 7% 49% 48:80%
25:00
0:34

30:00
0:49

24:66

0:1� � 0:2 0 49% 48:36%
50:00
0:79

55:00
0:82

29:21

0:15� � 0:2 1% 50% 49:12%
35:00
0:64

40:00
0:70

27:70

0:2� � 0:2 6% 50% 49:75%
30:00
0:54

35:00
0:64

25:43

0:25� � 0:2 15% 50% 49:50%
30:00
0:54

35:00
0:64

22:86

0:1� � 0:5 1% 41% 20:53%
35:00
0:70

165:00
0:98

27:41

0:15� � 0:5 9% 42% 21:86%
35:00
0:70

200:00
0:99

24:45

0:2� � 0:5 17% 50% 25:46%
35:00
0:73

165:00
0:99

21:36

0:25� � 0:5 27% 48% 29:61%
40:00
0:78

155:00
0:98

18:21

The comparison between Table 1A and Table 2B shows that, when the wage elasticity
of labor supply is positive, the optimal convex tax system aimed at reducing income
inequality always requires a central bracket with positive marginal tax rate (t2). The
tax rate on the third income bracket (t3) is approximately equal to its upper bound
and it declines as the elasticity increases. As to the tax rate (t1) on the �rst income
bracket, it is zero when the wage elasticity of labor supply and the exogenous revenue
requirement are low. However, when the amount of collected taxes or the wage
elasticity of labor supply rise, this no-taxation area may disappear.
Table 2B shows the optimal tax system for inequality reducing social objectives

under the non-convex regime, that is when t3 � t2. It always happens that the
optimal value of t3 is strictly below t2. In particular the di¤erence between the two
tax rates is sizeable when the wage elasticity of labor supply is equal to 0:5.
Table 3 compares the values of the social evaluation function associated to the
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two di¤erent tax regimes for each combination of G and ". The comparison shows
that, to reduce income inequality, the convex system is socially preferred to the non-
convex one for low level of the wage elasticity of labor supply. When the elasticity
is equal to 0.5 the optimal tax system becomes the non-convex one and top incomes
face lower marginal tax rates than incomes in the central part of the distribution.
The reason for choosing to reduce the tax rate on top incomes, whose weight in
the social evaluation function is low12, is related to a La¤er curve type e¤ect and is
reminiscent of the classical result for optimal non linear income taxation by Mirrlees
(1971) of zero marginal tax rate for the top income. Setting t3 below t2, it is possible
to collect more revenues from top incomes and thus to reduce the �scal burden for
people in the lower tail of the income distribution. The argument can be understood
looking at the last row of Tables 2A and 2B. Under the convex tax regime (Table
2A), the �rst income threshold is around the 70th percentile and the marginal tax
rate in this income bracket is equal to 27%. Then, there is a narrow central bracket
with a marginal tax rate equal to 41% and including about the 7% of population.
The marginal tax rate on the remaining 23% of the population is equal to 44%. The
non-convex tax regime (table 2B) entails a remarkable reduction of the marginal tax
rate in the last bracket which however includes only the 2% of the population. The
marginal tax rate in the central bracket increases to 48%. Finally the marginal tax
rate within the �rst bracket is the same as in the convex case but the �rst bracket is
however larger (it includes the 78% of the population) than the corresponding bracket
in the convex tax system. In summary, when the wage elasticity is equal to 0.5, the
welfare gains due to the fact that more people belong to the �rst income bracket (and
to the fact that top incomes face a lower marginal tax rate), o¤set the welfare loss
determined by the higher marginal tax rate on the incomes belonging to the central
bracket.
12See the Gini weighting function in �gure 1.
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Table 3. Convex vs. Non-convex regime: Gini SEF.

G " WC WNC
Socially preferred

tax regime

0:1� � 0:1 29:57 29:54 Convex
0:15� � 0:1 28:65 28:47 Convex
0:2� � 0:1 27:06 26:97 Convex
0:25� � 0:1 24:79 24:66 Convex

0:1� � 0:2 29:23 29:21 Convex
0:15� � 0:2 27:80 27:70 Convex
0:2� � 0:2 25:47 25:43 Convex
0:25� � 0:2 22:91 22:86 Convex

0:1� � 0:5 27:39 27:41 Non Convex
0:15� � 0:5 24:38 24:45 Non Convex
0:2� � 0:5 21:32 21:36 Non Convex
0:25� � 0:5 18:14 18:21 Non Convex

Table 4A. Optimal convex tax-system for polarization based SEF.

G " t1 t2 t3 y1 y2 W

0:1� � 0:1 0 0 24:53%
30:00
0:46

30:00
0:46

38:30

0:15� � 0:1 1% 1% 36:53%
20:00
0

30:00
0:48

35:89

0:2� � 0:1 9% 9% 37:81%
20:00
0:01

30:00
0:48

33:42

0:25� � 0:1 18% 18% 37:59%
30:00
0:48

30:00
0:48

30:94

0:1� � 0:2 10:52% 10:52% 10:52% 37:63
0:15� � 0:2 15:51% 15:51% 15:51% 34:99
0:2� � 0:2 20:96% 20:96% 20:96% 32:30
0:25� � 0:2 26:59% 26:59% 26:59% 29:56

0:1� � 0:5 10:57% 10:57% 10:57% 36:22
0:15� � 0:5 16:40% 16:40% 16:40% 32:74
0:2� � 0:5 22:75% 22:75% 22:75% 29:08
0:25� � 0:5 29:85% 29:85% 29:85% 25:17
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Table 4B. Optimal non-convex tax system: polarization based SEF.

G " t1 t2 t3 y1 y2 W

0:1� � 0:1 0 49% 0
30:00
0:49

65:00
0:84

39:04

0:15� � 0:1 3% 50% 3%
30:00
0:49

85:00
0:90

36:52

0:2� � 0:1 16% 48% 16:32%
25:00
0:34

75:00
0:87

33:99

0:25� � 0:1 23% 50% 23:41%
25:00
0:34

70:00
0:86

31:41

0:1� � 0:2 2% 50% 2%
30:00
0:54

60:00
0:84

38:33

0:15� � 0:2 9% 46% 9:40%
30:00
0:53

60:00
0:84

35:55

0:2� � 0:2 16% 48% 16:32%
30:00
0:54

55:00
0:81

32:76

0:25� � 0:2 23% 50% 23:41%
30:00
0:54

50:00
0:79

29:90

0:1� � 0:5 8% 28% 8:13%
30:00
0:56

50:00
0:80

36:58

0:15� � 0:5 14% 34% 14:18%
30:00
0:59

50:00
0:81

32:97

0:2� � 0:5 22% 32% 22:15%
30:00
0:58

40:00
0:71

29:18

0:25� � 0:5 29% 39% 29:11%
25:00
0:49

35:00
0:69

25:21

Tables 4A and 4B show the optimal tax schedule when the government objective
is the reduction of polarization. Table 4a illustrates the case of a convex tax regime.
When the wage elasticity of labor supply is equal to 0:1, the optimal tax system
envisages two income brackets, identi�ed by an income threshold which is close to the
median income. The marginal tax rate in the income bracket above that threshold is
higher than that in the �rst income bracket. When the exogenous revenue requirement
increases, the income threshold remains constant while the marginal tax rates, both
above and below the threshold, rise. When the wage elasticity of labor supply is
higher than 0:1, the optimal tax system aimed at reducing polarization requires a
proportional taxation, which is increasing in the amount of revenues required.
Simulations under the non-convex tax regime are reported in table 4B. In this

case, the optimal tax system requires a central bracket with a high marginal tax rate
(t2). For low values of the wage elasticity of labor supply, i.e. " equal to 0:1 or to
0:2, t2 is almost equal to its upper bound, while it sharply reduces when " raises to
0:5. As to the marginal tax rates on the two external brackets, they increase with
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the exogenous revenue requirement.
Finally Table 5 compares, for di¤erent combinations of G and ", the values of

the social evaluation function associated to the the convex and the non-convex tax
regimes when the aim of the government is to reduce polarization. The comparison
shows that the non-convex tax system is always socially preferred to the convex one
and therefore the optimal tax schedule is such that t2 > t3 > t1. Thus Proposition
3, which has been proved under the assumption of �xed labor supply, also holds
qualitatively when labor supply is endogenous, with the important quali�cation that
marginal tax rates in the �rst and the third bracket are no longer always equal to
zero and the marginal tax rate in the second bracket is no longer always equal to its
upper bound.

Table 5. Convex vs. Non Convex regime:Polarization SEF.

G " WC WNC
Socially preferred

tax regime

0:1� � 0:1 38:30 39:04 Non Convex
0:15� � 0:1 35:89 36:52 Non Convex
0:2� � 0:1 33:42 33:99 Non Convex
0:25� � 0:1 30:94 31:41 Non Convex

0:1� � 0:2 37:63 38:33 Non Convex
0:15� � 0:2 34:99 35:55 Non Convex
0:2� � 0:2 32:30 32:76 Non Convex
0:25� � 0:2 29:56 29:90 Non Convex

0:1� � 0:5 36:22 36:58 Non Convex
0:15� � 0:5 32:74 32:97 Non Convex
0:2� � 0:5 29:08 29:18 Non Convex
0:25� � 0:5 25:17 25:21 Non Convex

6 Concluding remarks

In this paper we adopt a non-welfarist approach to analyze how the optimal income
tax schedule changes according to the government�s redistributive objective expressed
in terms of either inequality or polarization reduction. More speci�cally, the focus
is on the socially desirable mechanism collecting a given level of per-capita revenue,
when redistribution is not allowed. We consider a piecewise linear income tax sched-
ule with three income brackets. As in the optimal taxation literature, the tax problem
is formalized as a constrained optimization exercise. The interesting aspect of our
work is the formalization of the government�s redistributive objective, which is ex-
pressed by a rank-dependent social evaluation function. In particular, in line with
the literature on income inequality measurement we have considered two families of
rank-dependent evaluation functions that incorporate either concerns for inequality
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reduction or concerns for polarization reduction.
Our results reveal that redistributive objectives matter. The optimal tax schedule

substantially changes depending on whether the government is inequality or polar-
ization sensitive. In particular, with �xed labor supply, the optimal tax schedule
maximizing an inequality sensitive SEF requires an income threshold above which
the tax burden is the maximal admissible, and below which there is no taxation. In
other words, to reduce income inequality the optimal tax system suggests to reduce
the income distance between incomes within the second bracket and between these
incomes and those in the �rst bracket that are not taxed. As to polarization reduc-
tion, the optimal tax schedule envisages a central interval where the tax rate is the
maximum admissible and it is set equal to zero outside this interval. That is, the
way to face polarization is to reduce the distance between the incomes in the central
bracket so to create a sort of less disperse middle class. At the same time the income
in the higher bracket are taxed according to a lump-sum taxation that is keeping
their absolute dispersion una¤ected.
In order to make explicit the optimal tax system and to highlight di¤erences in the

redistributive objective numerical simulations are performed. In addition, simulations
are implemented for di¤erent levels of wage labor supply elasticity and by considering
two di¤erent tax regimes, depending on the ranking of t2 and t3, i.e. convex scheme
where t2 � t3 and non-convex where t3 � t2:
Simulations shows that in order to reduce inequality the convex regime is socially

preferred to the non-convex one for low levels of wage labor supply elasticity. In
addition, the optimal tax schedule always requires a central bracket exhibiting a
positive tax rate. When elasticity is high the optimal tax schedule is non-convex and
the reason is related to a La¤er curve type argument. With regard to the polarization
reduction, the socially desirable tax con�guration is always non-convex. In this case
the result derived with �xed labour supply that requires for a lower marginal taxation
for the upper income bracket is also combined with the La¤er type e¤ect that is
exhibited also when considering inequality sensitive SEFs.

Appendix A

Solutions of the constrained optimization problems for in-
equality and polarization sensitive SEFs.

Recall the SEF constrained optimization problem where

max
t1;t2;t3;y1;y2

L = Wv + �

�
G�

Z 1

0

T (y (p)) dp

�
;

with ti 2 [0; 1]; y1 < y2: The associated partial derivatives are @L
@ti
for i = 1; 2; 3; @L

@yi

for i = 1; 2; and @L
@�
:
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More speci�cally

@L
@ti

= �
Z 1

0

v (p)
@T (y(p))

@ti
dp� �

Z 1

0

@T (y(p))

@ti
dp for i = 1; 2; 3.

Given the tax function T (y) ; the term @T (y)
@ti

is

@T (x)

@t1
= min fy, y1g ;

@T (y)

@t2
=

8<:
0 if y � y1

y � y1 if y1 < y � y2
y2 � y1 if y > y2

and
@T (y)

@t3
= max fy � y2, 0g :

Hence the partial derivatives with respect the three tax rates ti are respectively

@L
@t1

= �
Z p1

0

v (p) y (p) dp�
Z 1

p1

v (p) y1dp� �
�Z p1

0

y (p) dp+

Z 1

p1

y1dp

�
; (19)

@L
@t2

= �
Z p2

p1

v (p) [y (p)� y1] dp�
Z 1

p2

v (p) [y2 � y1] dp (20)

��
�Z p2

p1

[y (p)� y1] dp+
Z 1

p2

(y2 � y1) dp
�

or equivalently ; after rearranging, @L
@t2
could be written as

@L
@t2

= �
Z 1

p1

v (p)min fy (p) , y2g dp+
Z 1

p1

v (p) y1dp��
�Z 1

p1

min fy (p) , y2g dp�
Z 1

p1

y1dp

�
;

and
@L
@t3

= �
Z 1

p2

v (p) [y (p)� y2] dp� �
Z 1

p2

[y (p)� y2] dp: (21)

The two F:O:Cs with respect the income thresholds y1 and y2 are:

@L
@y1

= �
Z 1

0

v (p)
@T (y)

@y1
dp� �

�Z 1

0

@T (y)

@y1
dp

�
= 0

and
@L
@y2

= �
Z 1

0

v (p)
@T (y)

@y2
dp� �

�Z 1

0

@T (y)

@y2
dp

�
= 0
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where the derivatives of the tax function with respect to the income threshold are
respectively

@T (y)

@y1
=

�
0 if y � y1

t1 � t2 if y > y1

and
@T (y)

@y2
=

�
0 if y � y2

t2 � t3 if y > y2
:

These two associated F:O:Cs can then be rewritten as

@L
@y1

= �
Z 1

p1

v (p) [t1 � t2] dp� �
Z 1

p1

(t1 � t2) dp = 0 (22)

and
@L
@y2

= �
Z 1

p2

v (p) [t2 � t3] dp� �
�Z 1

p2

(t2 � t3) dp
�
= 0: (23)

The F:O:C: with respect to the Lagrangian multiplier is

@L
@�

= G�
Z 1

0

T (y (p)) dp = 0: (24)

Derivation and simpli�cation of F.O.Cs.

The associated Kuhn-Tucker �rst order conditions (F.O.Cs) are for the marginal tax
rates, either

@L
@ti

����
ti=0

� 0; or @L
@ti

����
ti2(0;1)

= 0; or
@L
@ti

����
ti=1

� 0

for i = 1; 2; 3: While the F.O.Cs for the income bracket thresholds are

@L
@y1

= 0;

@L
@y2

= 0

with y2 > y1 > 0; and for the multiplier � the F.O.C. requires that

@L
@�

= 0:

We provide here �rst a proof of the optimization result for inequality sensitive
SEFs, then we will prove the result for the polarization sensitive SEFs.
The �rst simpli�cations of the F.O.Cs. are expanded here below.
As shown above, the derivatives of the Lagrangian function in (11) are:

@L
@ti

= �
Z 1

0

v (p)hi (p) dp� �
�Z 1

0

hi (p) dp

�
(25)
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for i = 1; 2; 3; where

h1 (p) : =

�
y (p) if p < p1
y1 if p � p1

;

h2 (p) : =

8<:
0 if p < p1
y (p)� y1 if p 2 [p1; p2)
y2 � y1 if p � p2

;

h3 (p) : =

�
0 if p < p2
y (p)� y2 if p � p2

:

The associated cdfs of these three inverse functions are denoted with Hi.
The partial derivatives w.r.t. the thresholds of the income brackets are also

@L
@y1

= [t2 � t1] [1� V (p1) + (1� p1)�] (26)

@L
@y2

= [t3 � t2] [1� V (p2) + (1� p2)�] (27)

and the derivative w.r.t. Lagrange multiplier is

@L
@�

= G�
Z 1

0

T (y (p)) dp = G�
3X
i=1

ti

Z 1

0

hi (p) dp: (28)

Recall that each SEF can be decomposed into an abbreviated social evaluation
where the average of a distribution is multiplied by 1 minus a measure Dv (:) of the
degree of dispersion quanti�ed by a linear index. That isWv(F ) = � (F ) [1�Dv(F )] ;
in our caseDv(F ) could be for instance the Gini index or a polarization index as those
illustrated in Section 2. It follows that

@L
@ti

= �� (Hi) � [1�Dv(Hi)]� � � � (Hi) = �� (Hi) � [1�Dv(Hi) + �] :

Moreover, denote with �i(p) the quantile function at position p of distribution of �i
where incomes are equal to 0 for all individuals whose position is lower than pi and
are constant with value z > 0 for all individuals in positions p � pi; that is

�i(p) :=

�
0 if p < p1
z if p � p1

:

Note that � (�i) = z � (1� p1): It follows that:
@L
@y1

= [t2 � t1] [1� V (p1) + (1� p1)�]

= [t2 � t1] [� (�1) � [1�Dv(�1)] + � (�1)�] ; (29)
@L
@y2

= [t3 � t2] [1� V (p2) + (1� p2)�]

= [t3 � t2] [� (�2) � [1�Dv(�2)] + � (�2)�] ; (30)
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and
@L
@�

= G�
3X
i=1

ti � � (Hi) : (31)

The partial derivatives for the social optimization problem are summarized in the
next remark.

Remark 1 The partial derivatives of the Lagrangian optimization problem in (11)
are:

@L
@ti

= �� (Hi) � [1�Dv(Hi) + �] for i 2 f1; 2; 3g;

@L
@y1

= [t2 � t1] � � (�1) � [1�Dv(�1) + �] ;

@L
@y2

= [t3 � t2] � � (�2) � [1�Dv(�2) + �] ;

@L
@�

= G�
3X
i=1

ti � � (Hi) :

Note that if we let @L
@yi
= 0; then either ti+1 = ti holds or � = � [1�Dv(�i)] :

Inequality concerns.

We derive here the qualitative features of the optimal taxation problem that hold for
any distribution of pre-tax gross incomes, for the class of inequality sensitive SEFs
WI given by the set of all linear rank-dependent SEFs with decreasing weights v(p);
and for the set T�� of piecewise linear three brackets tax functions whose marginal tax
rates could not exceed �� 2 (0; 1].

Derivation of optimal tax scheme for SEFs in WI : Consider the results in
Remark 1. If we consider SEFs where v(p) is decreasing as is the case for the Gini
based SEF and in general for all SEFs that are sensitive to inequality reductions
through rank preserving progressive transfers from richer to poorer individuals, then
Dv(�1) < Dv(�2) [with Dv(�1) = Dv(�2) only if p1 = p2]: This is the case because
once the distributions �1 and �2 are normalized by their respective means; then it is
possible to move from the latter to the former through a series of progressive transfers
from the richer individuals with those poorest with normalized income 0.
It then follows that either (i) [t3 = t2 = t1 = t] or (ii) � = � [1�Dv(�1)] and

[t3 = t2 = � ] :
The case (i) is not consistent with the solution because according to the revenue

constraint we should obtain t =
P3

i=1 � (Hi) =G 2 (0; 1): In this case it should be

@L
@ti

= �� (Hi) � [1�Dv(Hi) + �] = 0
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for all i = 1; 2; 3: Given that Dv(Hi) could be di¤erent for all i, then � = 1�Dv(Hi)
could not hold for all i:
The solution associated to case (ii) then should hold. It then follows that, given

that � = Dv(�1)� 1; we obtain

@L
@ti

= �� (Hi) � [1�Dv(Hi) + �] = �� (Hi) � [Dv(�1)�Dv(Hi)] :

It can be proved that Dv(H3) > Dv(H2) > Dv(�1) > Dv(H1) for any SEF where v(p)
is decreasing and there is positive density both below y1, in between y1 and y2; and
above y2 [that is if 0 < p1 < p2 < 1]. In order to make these comparisons one has to
normalize all incomes by the total income of the respective distribution and therefore
make the comparisons by looking at the distribution of the shares of total income.
Once the income shares are compared the distribution with the smaller dispersion
evaluated by any rank-dependent SEF with decreasing positional weights is the one
where the cumulated income shares are larger for any p: In fact in H1 income shares
are larger than those in �1 at the bottom of the distribution for all p � p1 and are
constant and smaller than those in �1 for p > p1: As a result the cumulated income
shares are larger in H1 than in �1 for any p 2 (0; 1): Following an analogous logic it
could be proved also that Dv(H3) > Dv(H2) > Dv(�1):
From the condition Dv(H3) > Dv(H2) > Dv(�1) > Dv(H1) then follows that:

@L
@t1
< 0; @L

@t2
> 0; and @L

@t3
> 0: As a result we obtain then that t1 = 0; t3 = t2 = � = 1;

where y1 and y2 are set such that G =
P3

i=2 � (Hi) :
Given the above result, the only threshold that matters for the solution is y1:

Moreover, given the sign of the partial derivatives @L
@t1
< 0; @L

@t2
> 0; and @L

@t3
> 0 then

for any given value of y1 we have that the choice of t1 = 0; t3 = t2 = 1 identi�es
a maximum point of the objective function. However, for t1 = 0; t3 = t2 = 1 the
value of the threshold y1 is identi�ed by the revenue constraint, in this case we have
that y1 should be such that G = � (H2) + � (H3) : As a result the solution is a global
maximum for the constrained optimization problem.
The above result could be generalized in order to take into account tax functions

whose upper marginal tax rate is not necessarily 100%. To summarize, if we assume
that the maximal marginal tax rate is �� 2 (0; 1] s.t. G � �� � � (F ) we can derive the
statement highlighted in the next proposition.

Proposition 4 (1A) A solution of the optimal taxation problem with �xed labour
supply for tax schedules in T�� maximizing linear SEFs in WI is

t1 = 0;

t3 = t2 = �� ;

with y1 s.t. G = �� [� (H2) + � (H3)] :
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Polarization concerns.

In order to derive the optimal three brackets linear tax scheme for polarization sen-
sitive evaluation measures we will take as starting point the results in Remark 1.
We consider polarization sensitive linear rank-dependent SEFs where v(p) is in-

creasing below the median and above the median and weights are larger in the
�rst interval than in the second with v(0) = v(1) = 1 and limp!1=2� v(p) = 2 6=
limp!1=2+ v(p) = 0 as for the polarization P index illustrated in the previous section.
We denote with WP the set of all these SEFs.
For these SEFs it is possible to derive p1 and p2 such that Dv(�1) = Dv(�2): This

is the case for instance for the SEF whose weights are represented in (5) : For these
measures it is possible to derive the associated V (p) and compute 1�V (p)

1�p : They are
respectively:

VP (p) =

�
p2 + p if p � 1=2
p2 + 1� p if p > 1=2

;

with
1� VP (p)
1� p =

(
1� p2

1�p if p � 1=2
p if p > 1=2

:

Which can be represented as in the following �gure

1�VP (p)
1�p

Note that for this speci�c SEF we have that @L
@y1
= @L

@y2
= 0 if�� = 1�VP (p1)

1�p1 = 1�VP (p2)
1�p2 :

The above function 1�VP (p)
1�p is continuous and is decreasing for p � 1=2; and increasing

for p > 1=2; with the minimum in p = 1=2 where it takes the value of 1/2, and the
maxima in p = 0 and p = 1 where it takes the value of 1. It then follows that there
exist p1 < 1=2 and p2 > 1=2 such that �� = 1�VP (p1)

1�p1 = 1�VP (p2)
1�p2 for �� > 1=2:
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In this case

�� = 1�Dv(�1) = 1�
p21

1� p1
= 1�Dv(�2) = p2

thus p21
1�p1 = Dv(�1) = Dv(�2) = 1� p2:

More generally for all SEFs inWP the associated function 1� V (p) is continuous
and strictly decreasing [from 1 to 0] for all p; and is concave for p � 1=2 and for
p 2 (1=2; 1]; with slope -1 for p = 0 and p = 1: By computing the derivative of
1�V (p)
1�p ; its sign depends on the sign of �v(p)(1�p)+1�V (p); by construction of the
weighting function it turns out that in line with what shown for the bi-polarization
weighting VP (p); we have that for all SEFs in WP the value of

1�V (p)
1�p is decreasing

for p � 1=2; and increasing for p > 1=2; with the minimum in p = 1=2.
Following the same logic presented for the inequality sensitive SEFs the optimal

solution for SEFs in WP excludes the case where [t3 = t2 = t1 = t] :
We can then consider three cases: (i) t3 6= t2; t1 6= t2; (ii) t3 = t2; t1 6= t2; and

(iii) t3 6= t2; t1 = t2: Where cases (ii) and (iii) can be analyzed symmetrically.

Consider �rst case (i) where

@L
@y1

=
@L
@y2

= 0! � = �1 +Dv(�1) = �1 +Dv(�2): (32)

By substituting � into the formula for @L
@ti
one obtains

@L
@ti

= �� (Hi) � [Dv(�1)�Dv(Hi)]

= �� (Hi) � [Dv(�2)�Dv(Hi)]

for all i = 1; 2; 3; with p1 < 1=2 < p2:
Note that for any polarization measureDv(�2) > Dv(H3); that is @L@t3 < 0; implying

that t3 = 0: This result is obtained because the di¤erence between �2 and H3 is that
the latter distribution is more disperse for realizations that take place in positions
above p2 > 1=2; while in �2 all incomes covering these positions are equal. As we
have argued, moving fromH3 to �2 increases polarization because this transformation
increases the identi�cation e¤ect reducing the inequality between the individuals on
the same side of the median.
It is possible also to show that for dispersion measures that are sensitive to po-

larization we have that Dv(�1) > Dv(H1) that is @L
@t1
< 0; implying that t1 = 0:

This result could be obtained by properly de�ning distributions �1 and H1 so
that � (�1) = � (H1) : By construction it follows that these distributions cross once
for p = p1 and for all p > p1 with p1 < 1=2; incomes are larger in �1 with a constant
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di¤erence compared to those in H1; while for p < p1 incomes are larger in H1: It then
follows that H1 can be obtained from �1 by transferring all the income di¤erences for
p > p1 in order to compensate the di¤erences of opposite sign for p < p1: Note that
the average weight in the SEF for income in position p > p1 is lower than the minimal
weight [that corresponds to 1] for all the incomes in position p < p1: As a result the
SEF value increases when moving from �1 to H1 and given that � (�1) = � (H1) then
Dv(�1) > Dv(H1).
In order to verify the condition related to the sign of @L

@t2
; it is possible to combine

distributions �1 and �2 whose linear measures of polarization are the same in order
to obtain a new distribution �12 with the same value for the measure of polarization
but such that its quantile function intersects from above the one of H2 for p = 1=2:
In this case it can be shown that for polarization sensitive dispersion measures we

have that Dv(�1) = Dv(�2) < Dv(H2); thus we obtain @L
@t2
> 0 and therefore t2 = 1:

This is the case because by construction �12 can be obtained from H2 by trans-
ferring incomes from above the median to below the median and transferring incomes
from positions that are above the median and close to it to individuals in the upper
tail. Both operations reduce the polarization and thus Dv(H2) > Dv(�12):
We then obtain t2 = 1 and t1 = t3 = 0; with p1 < 1=2 < p2 where Dv(�1) =

Dv(�2) and such that G = � (H2) :
In order to verify that such conditions are associated to a constrained maximum,

note �rst that given the sign of the partial derivatives @L
@t3
< 0; @L

@t1
< 0; and @L

@t2
> 0;

then for given values of p1 and p2 (and so also for given values of y1 and y2) satisfying
the revenue constraint G = � (H2) we have that the combination t2 = 1 and t1 = t3 =
0 is associated to a maximum. Consider now the population shares p�1 < 1=2 < p�2
associated to the solution that satisfy the condition (32) and the revenue constraint
that is such that � = �1 + Dv(�1) = �1 + Dv(�2) and G = � (H2) : Our aim is
to show that under the condition t2 = 1 and t1 = t3 = 0 these population shares
(and the associated values of y1 and y2) correspond to a maximum of the constrained
optimization problem.
Associated to these shares we have the value �� and the dispersion indicesDv(�

�
1) =

Dv(�
�
2) such that 1�Dv(�

�
1) + �

� = 0 and 1�Dv(�
�
2) + �

� = 0.
Consider a generic pair of shares p1 < 1=2 < p2 (with associated values of y1

and y2) in the neighborhood of p�1 and p
�
2 that satis�es the revenue constraint. By

construction, given that the revenue constraint has to satis�ed it should be either
that (I) p1 < p�1 < 1=2 < p2 < p�2 or that (II) p

�
1 < p1 < 1=2 < p�2 < p2: That

is, a reduction (increase) in y1 should be paired with a reduction (increase) in y2
in order to continue to satisfy the revenue constraint. Substituting the condition
t2 = 1 and t1 = t3 = 0 in the SEF and making use of the calculations leading to
(22) and (23) we have that @Wv

@y1
=
R 1
p1
v (p) dp = 1�V (p1) and @Wv

@y2
= �

R 1
p2
v (p) dp =

1�V (p2): Moreover, denoting with G the revenue
R 1
0
T (y (p)) dp we obtain also that

@G
@y1
= �

R 1
p1
dp = �(1� p1) and @G

@y2
=
R 1
p2
dp = (1� p2): It follows that by taking the

di¤erential of the revenue we have dG = �(1 � p1)dy1 + (1 � p2)dy2; so under the
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assumption that the revenue constraint is satis�ed G = G; we have that dG = 0 and
so

(1� p1)dy1 = (1� p2)dy2: (33)

Analogously the di¤erential of the SEF is

dWv = [1� V (p1)] dy1 � [1� V (p2)] dy2: (34)

Substituting for dy2 from (33) we obtain

dWv = (1� p1) �
�
1� V (p1)
1� p1

� 1� V (p2)
1� p2

�
dy1: (35)

Recall that the value of 1�V (p)
1�p is decreasing for p � 1=2; and increasing for p > 1=2;

with the minimum in p = 1=2. As a result under case (I) we have that dy1 < 0 and
that p1 and p2 decrease w.r.t. p�1 and p

�
2: As a result

1�V (p1)
1�p1 > 1�V (p2)

1�p2 and so dWv < 0:
Similarly we have that if dy1 > 0 then p1 and p2 increase w.r.t. p�1 and p

�
2; and so

1�V (p1)
1�p1 < 1�V (p2)

1�p2 leading to dWv < 0 according to (35): As a result the combination of
p�1 and p

�
2 where

@L
@y1
= @L

@y2
= 0 identi�es a maximum for the constrained optimization.

Consider now case (ii) where t3 = t2; t1 6= t2 implying that in order to obtain
@L
@y1
= 0 necessarily it is required that � = �1 +Dv(�1):

Note that t3 = t2 guarantees that @L
@y2

= 0 irrespective of the value of p2; that in
any case has to satisfy p2 > p1:
Substituting for � into @L

@ti
we obtain

@L
@ti

= �� (Hi) � [Dv(�1)�Dv(Hi)] :

Recall that t3 = t2 implies that the sign of Dv(�1) � Dv(H2) according to the
polarization sensitive dispersion measures Dv(�) should be the same as the sign of
Dv(�1)�Dv(H3); and this result should hold for any p2 > p1:
We leave aside for the moment the case where Dv(�1) � Dv(H2) = Dv(�1) �

Dv(H3) = 0.
We can then have two cases, either t3 = t2 = 1 and t1 = 0; or t3 = t2 = 0 and

t1 = 1:
Note that in the �rst case the revenue constraints require thatG = � (H1)+� (H2) ;

while in the second case it is required that G = � (H1) :
As G increases �� should increase, therefore in consideration that �� = 1 �

Dv(�1) we have that:
(iia) either p1 < 1=2; t3 = t2 = 1 and t1 = 0;
(iib) or p1 > 1=2; t3 = t2 = 0 and t1 = 1:
In fact for (iia) we have that as G increases then p1 should be reduced to increase

the tax base in order to collect the required tax revenue, at the same time as �1
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changes we have that also �� increases. Given the de�nition of �1 this will not be
the case if p1 > 1=2:
For (iib) we have the symmetric argument where the value of p1 > 1=2 should

increase in order to guarantee to collect the required revenue and this will lead to an
increase of �� because p1 > 1=2:
As for the previous case (i), given the shape of �1, we can either have p1 < 1=2;

or p1 > 1=2; and therefore both (iia) and (iib) are admissible cases.
Suppose we take p1 < 1=2:
Substituting for � = �1+Dv(�1) into @L

@ti
we obtain @L

@ti
= �� (Hi)�[Dv(�1)�Dv(Hi)] :

As for the analysis in case (i) we can show that Dv(�1) > Dv(H1) giving t1 = 0: Note
that we obtain t3 = t2 = 1 if the signs ofDv(�1)�Dv(H2) and ofDv(�1)�Dv(H3) are
negative, it should also be that Dv(�1) < Dv(H2) when p2 is set equal to 1. However,
it is not possible here to derive a clear-cut conclusion on the sign of Dv(�1)�Dv(H2);
and in general for a given weighting function and a given distribution the possibility
of obtaining Dv(�1) > Dv(H2) when p2 = 1 cannot be ruled out.
Consider now case (iib) where p1 > 1=2: Again, referring to the analysis developed

for case (i) we can show that Dv(�1) > Dv(H2) and Dv(�1) > Dv(H3) giving t3 =
t2 = 0: Similarly to what argued for the previous case (iia) it is not possible now to
derive a clear-cut conclusion on the sign ofDv(�1)�Dv(H1); and in general for a given
weighting function and a given distribution the possibility of havingDv(�1) > Dv(H1)
and therefore that it should not hold t1 = 1 cannot be ruled out.
Going back now to the case where Dv(�1) � Dv(H2) = Dv(�1) � Dv(H3) = 0.

If this is the case, then t3 = t2 may not reach the maximal value. However, as the
revenue requirement increases then �� should also increase, then p1 changes and
accordingly also �1 changes, it follows that Dv(�1) is modi�ed and given that H2
and H3 are not a¤ected then the signs of Dv(�1) � Dv(H2) and Dv(�1) � Dv(H3)
change leading either to t3 = t2 = 1 or t3 = t2 = 0: Thus, the solutions where tax
rates take the extreme values as in (iia) or (iib) are admissible only for cases related
to speci�c revenue values, and in general are not guaranteed as the solution at point
(i). If these latter solutions are identi�ed they are associated to local maxima of
the constrained optimization problem (see the arguments discussed for the solution
related to the inequality sensitive SEF case) and should be compared to the solution
at point(i).

If we consider case (iii) we can note that it is analogous to case (ii) because both
cases will require to consider essentially two brackets with maximal marginal tax rate
within one bracket and minimal marginal tax rate in the other.

A remark for cases (iia) and (iib). Before summarizing the results we make the
following remark that is motivated by the fact that cases (iia) and (iib) hold only if
the revenue requirement is "su¢ ciently high". In fact for case (iia) we have p1 < 1=2;
and the maximal tax rates are t3 = t2 = 1 with t1 = 0; and for case (iib) we have
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p1 > 1=2; with t3 = t2 = 0 and maximal tax rate set at t1 = 1: Analogous results hold
also if we assume that the maximal marginal tax rate is �� 2 (0; 1]: Let y (1=2) = yM
denote the median income. Then, let H� denote the distribution whose quantile
function is

h� (p) =

�
y (p) if p < 1=2
yM if p � 1=2 ;

and let H+ denote the distribution whose quantile function is

h+ (p) =

�
0 if p < 1=2
y (p)� yM if p � 1=2

The associated averages of these two distributions are respectively � (H�) and � (H+)
such that by construction their sum coincides with the overall per-capita gross income,
that is � (H�) + � (H+) = � (F ). The next remark holds

Remark 2 Case (iia) may hold only if G > �� [� (H+)] : Case (iib) may hold only if
G > �� [� (H�)] :

Recall that the condition in the remark are only necessary for (iia) or (iib) to
hold, while if they do not hold this is su¢ cient to guarantee that case (i) holds.
We can now summarize the results in the next proposition.

Proposition 5 (3A) The solution of the optimal taxation problem with �xed labour
supply for tax schedules in T�� maximizing linear SEFs in WP is:
(i) p1 < 1=2 < p2 where I(�1) = I(�2) and such that G = ��� (H2) with

t1 = t3 = 0;

t2 = �� ;

if G � minf��� (H+) ; ��� (H�)g.
(iia) If G > ��� (H+) solution (i) should be compared with p1 < 1=2; and

t1 = 0;

t2 = t3 = ��

where G = �� [� (H2) + � (H3)]
(iib) If G > ��� (H�) solution (i) should be compared with p1 > 1=2;

t1 = �� ;

t2 = t3 = 0;

where G = ��� (H1) :
(iii) If G > maxf��� (H+) ; ��� (H�)g all three solutions should be compared.
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Appendix B

The derivation of the optimal gross income distribution for
the non-convex tax schedule.

In this appendix we present all computations underlying the derivation of the gross
income distribution for the non-convex tax schedule case. We �rst derive the gross
income distribution in the space of wages w, then we express such distribution in
terms of quantiles y (p) : More speci�cally, we start the analysis by �rst assuming
that under the non-convex regime the optimal labour supply and gross income are
the same for all incomes that are in the �rst bracket and at the �rst threshold, the
result changes for the income levels in the second and third brackets. In particular,
if t2 > t3 then there exists a threshold level bw in the wage distribution such that
all wages above bw are such that the associated y 2 Y3ny2; while for all wages in�h
y��11

k�
(1�t2)

i 1
�
; bw� the associated gross income is such that y 2 Y2ny1:

For all w > y��11

�
k�

(1�t2)

� 1
�
the optimal gross income is y� > y1: If t2 > t3; the

conditions in (15) could identify two potential levels of incomes one in Y2ny1 and one
in Y3ny2 where theMRSxy and the slope of the net income function y�T (y) coincide.
The optimal choice should then correspond to the one that exhibits larger utility.

Let y�i = w
�

��1

h
(1�ti)
k�

i 1
��1

with l�i =
h
(1�ti)w
k�

i 1
��1

for i = 2; 3: Recall from (14)

that the associated net incomes x�i are x
�
2 = (t2 � t1)y1 + (1 � t2)y�2 and x�3 = (t2 �

t1)y1 + (t3 � t2)y2 + (1 � t3)y�3; then the utility levels associated to the pairs (x�i ; l�i )
for i = 2; 3 are respectively

U2 = U(x�2; l
�
2) = x

�
2 � k � l��2 = (t2 � t1)y1 + (1� t2)wl�2 � kl��2 ;

U3 = U(x�3; l
�
3) = x

�
3 � k � l��3 = (t2 � t1)y1 + (t3 � t2)y2 + (1� t3)wl�3 � kl��3 :

It then follows that l� = l�2 when w > y
��1
1

�
k�

(1�t2)

� 1
�
if and only if U2 � U3; otherwise

we have l� = l�3:
That is, l� = l�2 holds whenever

(t2 � t1)y1 + (1� t2)wl�2 � kl��2 � (t2 � t1)y1 + (t3 � t2)y2 + (1� t3)wl�3 � kl��3 ;

which can be simpli�ed as

(1� t2)wl�2 � kl��2 � (t3 � t2)y2 + (1� t3)wl�3 � kl��3 :
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After substituting for l�i one obtains

(1� t2)w
�
(1� t2)w
k�

� 1
��1

� k
�
(1� t2)w
k�

� �
��1

�(1� t3)w
�
(1� t3)w
k�

� 1
��1

+ k

�
(1� t3)w
k�

� �
��1

� (t3 � t2)y2;

that is �
(1� t2)w
k�

� �
��1

k (�� 1)�
�
(1� t3)w
k�

� �
��1

k (�� 1) � (t3 � t2)y2;

leading to

w
�

��1k (�� 1)
 �
(1� t3)
k�

� �
��1

�
�
(1� t2)
k�

� �
��1
!

� (t2 � t3)y2;

w
�

��1
(�� 1)
k

1
��1�

�
��1

�
(1� t3)

�
��1 � (1� t2)

�
��1

�
� (t2 � t3)y2:

It follows that

w
�

��1 � k
1

��1�
�

��1

(�� 1)
(t2 � t3)y2�

(1� t3)
�

��1 � (1� t2)
�

��1

� ;
or expressing the condition in terms of w one obtains that the wage should be lower
than a threshold bw; that is

w � bw := k 1
� (�� 1)

1
�

�

(�� 1)

24 (t2 � t3)y2�
(1� t3)

�
��1 � (1� t2)

�
��1

�
35��1

�

:

Recall that in order to obtain that y� is in Y2ny1 it should hold that

w 2
 �
y��11

k�

(1� t2)

� 1
�

;

�
y��12

k�

(1� t2)

� 1
�

!
;

we can then show that bw < hy��12
k�

(1�t2)

i 1
�
:

To prove this condition consider the equivalent constraint bw �
��1 < y2

h
(1�t2)
k�

i� 1
��1
;

that is
k

1
��1�

�
��1

(�� 1)
(t2 � t3)y2�

(1� t3)
�

��1 � (1� t2)
�

��1

� < y2 � k�

(1� t2)

� 1
��1

:
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After a series of simpli�cations and rearrangements one obtains

�

(�� 1)
(t2 � t3)�

(1� t3)
�

��1 � (1� t2)
�

��1

� <
1

(1� t2)
1

��1
;

�

(�� 1)(t2 � t3) <

�
1� t3
1� t2

� 1
��1

(1� t3)� (1� t2);

�

(�� 1)
(t2 � t3)
(1� t2)

<

�
1� t3
1� t2

� 1
��1 (1� t3)

(1� t2)
� 1;

1 +
�

(�� 1)
(t2 � t3)
(1� t2)

<

�
1� t3
1� t2

� �
��1

:

Let � = t2�t3
1�t2 > 0;

1�t3
1�t2 = 1+� and

�
(��1) = � > 1, the condition can then be rewritten

as
1 + �� < (1 + �)� :

This condition holds for all � > 0 and � > 1: Making use of the Hopital rule one can
also prove that as (t2 � t3) tends to 0 for positive values, the level of bw converges toh
y��12

k�
(1�t2)

i 1
�
from below.

We summarize these �nding with the following remark, where the condition (ii)
could be derived by taking the derivative of bw w.r.t. t3.
Remark 3 If t2 > t3; (i) bw <

h
y��12

k�
(1�t2)

i 1
�
; (ii) bw is increasing in t3; and (iii)

limt3!t�2
bw = hy��12

k�
(1�t2)

i 1
�
:

It could however be possible that bw < hy��11
k�

(1�t2)

i 1
�
; that is the threshold bw is

below the in�mum of the interval of wages leading to optimal choices of post tax
gross incomes in Y2ny1: If this is the case no post tax gross income is in the interval
Y2ny1: All gross incomes are therefore in the non adjacent intervals Y1ny0 and Y3ny2:

Given that t1 � t3 then in accordance with case A for all w <
h
y��11

k�
(1�t1)

i 1
�
we have

l� = l�1 =
h
(1�t1)w
k�

i 1
��1

and y� = y�1 = w
�

��1

h
(1�t1)
k�

i 1
��1

with y�1 2 Y1ny0:

If bw <
h
y��11

k�
(1�t2)

i 1
�
then for all wages where w � bw we have that l� = l�3 =h

(1�t3)w
k�

i 1
��1

and y� = y�3 = w
�

��1

h
(1�t3)
k�

i 1
��1
: This is the case because the indi¤erence

curve that for these wages is tangent to the net income function in Y3ny2; lies above
the one that is passing through the kink of the function associated to y = y1.
However, there could be also other wage levels lower than bw that lead to l�3 and

y�3 as optimal solutions.
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In order to identify them we need to investigate the case where bw < hy��11
k�

(1�t2)

i 1
�

and w 2
�h
y��11

k�
(1�t1)

i 1
�
; bw� :

In this case agents should choose between setting either y� = y1 or y� = y�3 =

w
�

��1

h
(1�t3)
k�

i 1
��1
:

The utility comparison then becomes

U1 = U((1� t1) y1; y1=w) = (1� t1) y1 � k � (y1=w)� ;
U3 = U(x�3; l

�
3) = (t2 � t1)y1 + (t3 � t2)y2 + (1� t3)wl�3 � kl��3 :

with y� = y1 if and only if U1 � U3; that is

(1� t1) y1�k�(y1=w)� � (t2�t1)y1+(t3�t2)y2+(1�t3)w
�

��1

�
(1� t3)
k�

� 1
��1

�k
�
(1� t3)w
k�

� �
��1

:

The condition can be simpli�ed into

y1 � k � (y1=w)� � t2y1 + (t3 � t2)y2 + (1� t3)
�

��1w
�

��1

�
1

k�

� 1
��1
�
�� 1
�

�
;

that is

(1� t2)y1 + (t2 � t3)y2 � k � y�1 � w�� + (1� t3)
�

��1 � w
�

��1

�
1

k�

� 1
��1
�
�� 1
�

�
:

A wage level ~w could then be derived such that the above condition is solved with
equality, that is such that

(1� t2)y1 + (t2 � t3)y2 = k � y�1 � ~w�� + (1� t3)
�

��1 � ~w
�

��1

�
1

k�

� 1
��1
�
�� 1
�

�
:

Case B.1. Let bw := k 1
� (�� 1)

1
� �
(��1)

�
(t2�t3)y2�

(1�t3)
�

��1�(1�t2)
�

��1
�
���1

�

; and assume that

bw � hy��11
k�

(1�t2)

i 1
�
: It follows that

y� =

8>>>>>>>>><>>>>>>>>>:

w
�

��1

h
(1�t1)
k�

i 1
��1

if w <
h
y��11

k�
(1�t1)

i 1
�

y1 if w 2
�h
y��11

k�
(1�t1)

i 1
�
;
h
y��11

k�
(1�t2)

i 1
�

�
w

�
��1

h
(1�t2)
k�

i 1
��1

if w 2
�h
y��11

k�
(1�t2)

i 1
�
; bw�

w
�

��1

h
(1�t3)
k�

i 1
��1

if w > bw
(36)
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where the post tax gross income y� is discontinuous at w = bw: With the associated
optimal labour supply levels

l� =

8>>>>>>>>><>>>>>>>>>:

h
w (1�t1)

k�

i 1
��1

if w <
h
y��11

k�
(1�t1)

i 1
�

y1=w if w 2
�h
y��11

k�
(1�t1)

i 1
�
;
h
y��11

k�
(1�t2)

i 1
�

�
h
w (1�t2)

k�

i 1
��1

if w 2
�h
y��11

k�
(1�t2)

i 1
�
; bw�h

w (1�t3)
k�

i 1
��1

if w > bw
:

By applying the following monotonically increasing transformation of the wage thresh-
old bw we obtain the gross income threshold by derived in the paper. In fact taking the
de�nition of bw one obtains that

bw �
��1

k
1

��1
= (�� 1)

1
��1

�
�

(�� 1)

� �
��1

24 (t2 � t3)y2�
(1� t3)

�
��1 � (1� t2)

�
��1

�
35

= (�� 1)(
1

��1�
�

��1) �(
1

��1+1)

24 (t2 � t3)y2�
(1� t3)

�
��1 � (1� t2)

�
��1

�
35 :

By using the de�nition of the gross income in (16) where y (p) := w (p)
�

��1
�
1
k�

� 1
��1 we

obtain that the gross income threshold satisfy by� 1
��1 = bw �

��1

k
1

��1
that is after substituting

by =
�

�� 1

24 (t2 � t3)y2�
(1� t3)

�
��1 � (1� t2)

�
��1

�
35

= (1 + ")

�
(t2 � t3)y2

((1� t3)(1+") � (1� t2)(1+"))

�
:

It then follows that the post tax gross income distribution is

yt(p) =

8>>><>>>:
y(p)(1� t1)" if y(p) < y1

(1�t1)"

y1 if y1
(1�t1)" � y(p) <

y1
(1�t2)"

y(p)(1� t2)" if y1
(1�t2)" � y(p) � by

y(p)(1� t3)" if y(p) > by
Note that as explained before with this con�guration of the tax system (t2 � t3) there
is no bunching of incomes at the second income threshold.
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Case B.2. Suppose that bw < hy��11
k�

(1�t2)

i 1
�
: Let ~w denote the solution of

(1� t2)y1 + (t2 � t3)y2 = k � y�1 � ~w�� + (1� t3)
�

��1 � ~w
�

��1

�
1

k�

� 1
��1
�
�� 1
�

�
(37)

such that ~w 2
�h
y��11

k�
(1�t1)

i 1
�
; bw� : The optimal levels are:

y� =

8>>>>><>>>>>:
w

�
��1

h
(1�t1)
k�

i 1
��1

if w <
h
y��11

k�
(1�t1)

i 1
�

y1 if w 2
�h
y��11

k�
(1�t1)

i 1
�
; ~w

�
w

�
��1

h
(1�t3)
k�

i 1
��1

if w > ~w

;

where the gross income is discontinuous at w = ~w with no gross income in the second
income bracket Y2; and

l� =

8>>>>><>>>>>:

h
w (1�t1)

k�

i 1
��1

if w <
h
y��11

k�
(1�t1)

i 1
�

y1=w if w 2
�h
y��11

k�
(1�t1)

i 1
�
; ~w

�
h
w (1�t3)

k�

i 1
��1

if w > ~w

:

At the same time, by using (16) and substituting in the implicit de�nition of ~w we
have that ey is the solution of:

(1� t2)y1 + (t2 � t3)y2 = y�1 �
ey1��
�

+ (1� t3)
�

��1 � ey��� 1
�

�
(1� t2)y1 + (t2 � t3)y2 = y

( "+1" )
1

�
"

"+ 1

� ey(� 1
") + (1� t3)"+1 � ey� 1

"+ 1

�
:

Then the post tax gross income distribution is

yt (p) =

8<:
y (p) (1� t1)" if y (p) < y1

(1�t1)"

y1 if y1
(1�t1)" � y (p) � ey

y (p) (1� t3)" if y (p) > ey :
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