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1 Introduction

There is increasing evidence that inequalities in accumulation of skills early in life con-

tribute to economic and health inequalities later in life. Evidence from recent PISA reports

highlights growing disparities across countries, as well as across social groups, in the skills

achievements of adolescents and young adults.

Part of the heterogeneity in skills can be traced down to innate abilities, to preferences

and effort choices of individuals. The resulting inequality in skills distribution has to be

respected as long as its determinants are regarded as fair sources of skills accumulation.

In this paper, we study criteria to quantify the effect of unfair sources of inequality in

skills acquisition. Factors such as parental education may have implications for children

skills development in early age, these effects cumulating throughout the life cycle into

inequalities in human capital, in earnings and eventually in opportunity for well-being.

We denote the contribution of these factors to overall skills heterogeneity in the pop-

ulation, defining inequalities in the distribution of skills across types in the population

(a type gathers children with similar background), as inequality of opportunity for skills

acquisition. This paper characterize preferences for a social planner who is averse to un-

equal distribution of skills opportunities and who values welfare distribution stemming

from skills acquisition in the society. These preferences are used to construct and test

robust ranking of societies according to the level of social welfare (and hence inequality

of opportunity for skills acquisition).

More formally, let n identify the number of types in the society, a type being a group of

people sharing the same circumstances. We assume a continuum of individuals populating

the society, with pi, i = 1, . . . , n the mass of individuals of type i. A society is represented

by a matrix p whose element pij is the probability that an individual from type i achieves

an outcome j. Hence,
∑k

j=1 pij = 1. We also denote p = (p1, . . . , pk) the population

probability of achieving an outcome j, with pj =
∑n

i=1 pipij. Taking an ex-ante perspective

on society, i.e. before individual preferences and choices are realized, we expect p to be

the skills opportunities distribution emerging if parental background circumstances had

no effect on individual skills accumulation.
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We measure the well-being of the type-specific skills opportunity distribution by
∑k

j=1 ujpij,

uj being the specific level of well-being that one would expect to observe if skills level j is

achieved. All individuals from the same type face the same distributions of opportunities

for skills accumulation, hence the same well-being. If, for instance, the coefficient uj mea-

sures the average wage attached to a given skill level j, then
∑k

j=1 ujpij would measure the

expected wage of a given type in the population. If there were equal opportunity for skills

acquisition, than every individual would ex-ante expect the same wage rate
∑k

j=1 ujpj.
1

Inequality of opportunity for skills acquisition emerges when the probabilities for skills

acquisition differ across types and, generally, from the population distribution p. It follow

that the distribution of consequences of unequal opportunities for skills acquisition, mea-

sured by
∑k

j=1 ujp1j,
∑k

j=1 ujp2j, . . . ,
∑k

j=1 ujpnj, also display inequality. This last form

of inequality can be well captured by a social welfare function that, under the veil of

ignorance, attaches the same weight all profiles irrespectively of the group of origin (i.e.

there is no intrinsic value attached the name of the group) while accounting for the de-

mographic composition of the population. Let φ be an increasing (captures the idea that

more advantageous distribution of consequences from opportunities in skills acquisition

lead to larger welfare) and concave (captures the idea if inequality of opportunity aversion:

increasing inequality of opportunity generated by family background characteristics are

detrimental for societal welfare) function, then social welfare W (p) is:

W (p) =
n∑
i=1

piφ

(
k∑
j=1

ujpij

)
(1)

for any φ and u.

Our first contribution establishes that the preferences of a ethical observer who respond

to meaningful properties can be represented by a social welfare function as in (1). We

provide an axiomatic characterization.

Our second contribution establishes testable, empirical criteria that allow to compare

two societies p and p′ on the basis of the social welfare they display. For a given choice of

1Nevertheless, the actual average wage rate might differ across types because of differences in the
ex-post effort choices, which might vary across individuals.
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φ and u, evaluation is simple: p′ is preferred to p if and only if W (p′) ≥ W (p). However,

this evaluation is not robust to the choice of the individual well-being indicator, nor to

the social evaluation function. Hence, we require W (p′) ≥ W (p) for all φ increasing

concave and all u. We analyze a statistical test that, when applied to the data p and

p′, would allow to conclude on the preferred society. While the roust welfare criterion

we identify is appealing, it lacks theoretical connections with inequality of opportunity

normative setting. We analyze as well the transformations of the data that, if applied

to p would produce a counterfactual society p′ displaying larger social welfare and that

unambiguously reduce inequality of opportunity for skills acquisition. We show that

welfare dominance is supported by finite sequence of these transformations.

The main result of the paper consists in two theorems that show the equivalence

between 1) transformations of the data, 2) welfare dominance 3) a statistical test. In

the first theorem, the focus is on situations where opportunities for skills acquisition are

defined over many (k) ordered outcomes and where the population distributions coincide.

In the second theorem, we focus is on social welfare functions as in (1) where well-

being indicators u are increasing in the outcome class, i.e. uj ≤ uj+1 for any skills level

j. Increasing well-being indicators imply that societies can be compared according to the

degree of inequality of opportunity as well as according to the advantages in opportunities

they display. We stick to the notion of stochastic dominance to identify distributions that

are more advantageous in terms of skills opportunities: if society p and society p′ do

not display inequality of opportunity but the distribution p stochastic dominates that p′

(i.e., the distribution of skills in the population p is undisputed better than that in p′),

then society p has to be preferred to p′ by all social evaluation functions. In this case,

improvements in opportunities can be trade-off by increments in inequality of opportunity

for skills acquisition.

We apply the measurement model described above to assess the opportunity unequal

distribution of basic skills around age 15, as measured in PISA data. PISA test outcomes

are constructed in a way that they measure skills of the tested children coherently with the

average degree of competencies expected at that age. Competencies are held fixed across
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countries in any give PISA year, making the PISA score comparable across countries.

We are interested in the unequal opportunities for PISA-skills acquisition conditional on

human capital, education and abilities of the parents of interviewed children. Our mea-

surement model accommodates for the possibility that PISA test scores map unobservable

real skills into PISA skills levels via a monotonic increasing transformation (not necessar-

ily linear), thereby preserving only ordinal (but not cardinal) meaning to measured skills.

Our model exploits exclusively ordinal information.

The scope of the analysis is to construct a robust, welfare consistent, ranking of OECD

countries participating to PISA, based on distribution of skills across types defined by the

quality of parental background experienced by the child. Even assuming that underling

skills are cardinally comparable (but PISA test scores are not) we face two important

measurement issues.

First, skills are malleable throughout the life cycle of the children. In particular,

differences across parental background composition, parental resources and (time and

monetary) investments may explain distribution of skills in early life. Differences in mech-

anisms of skills acquisition (for instance, via school segregation, or differences in public

versus private schooling) as well as the existence of skills complementarities (even within

the same system) and the degree of elitism in the education system, all operate during

late childhood and early adolescence, thus modifying the patterns of initial inequalities

in skills acquisition. Distinguishing the different cases, and understanding the empirical

limitations, is important to infer differential in inequality of opportunity across countries.

Consider for instance the situation in Figure 2(a). There are two types in this soci-

ety, one granting on average low initial skills st = s0 to children, the other background

granting on average high skill levels st = S0. The concave function represents the skills

cumulation process over the lifecycle, projeting skills at age 15 on the vertical axis for

any level of skills at early age. Coherently with the literature (see Heckman), the process

displays skills complementarities (high-skilled children tend to accumulate more skills on

average) but returns to skills are decreasing (concavity). Overall, we register inequality

of opportunity at age 15: s1 6= S1 for children experiencing different parental background.
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Figure 1: Inequality of opportunity and skills formation
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Note: The process of skills st formation along children lifecycle: from early age (t = 0) to age 15 (t = 1).
The example consider two types, one with low average skills (s) and one with high skills (S). The
acquisition processes are represented by line segments A and B.
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Nevertheless, the skill accumulation process is fair: The skill level at age 15 depends on

the skill level at early age, but types are exposed to the same skills accumulation pro-

cess. In this case, inequality of opportunity is generated by early life conditions. The fair

distribution incorporating no inequality of opportunity, corresponding to s1 (the average

of the distribution of skills at age 15 obtained by average skills distributions s1 and S1)

is however underestimating the distribution of opportunities that would be observed if

sources of unfair inequalities were removed (corresponding to s(s0)). This happens be-

cause the relevant source of inequality of opportunity takes place at early age, but there

are non-linearities in the process of skills accumulation. The validity of the welfare model

characterized in the paper, which is based on a linearity assumption, is hence informed

on a test for the presence of linearities in the skills formation process. If rejected, the

shape of the skills cumulation process plays a fundamental role in assessing inequality of

opportunities. If the accumulation process is increasing and concave (as in the figure),

then the welfare criterion we analyze would over-estimate inequality of opportunity.2

The second issue we address concerns the source of inequality of opportunity in skills

acquisition. Evaluating and ranking opportunity distributions in two countries should

single out the contribution of different sources. For policy purposes, it is for instance

relevant to distinguish between the contribution of the skills cumulation process (where

educational policies may play a role) from the contribution of differences in early conditions

(that household-based policies may countervail). Countries may, in fact, differ not only

on the process of accumulation of skills (where education system play a decisive role), but

also on demographics and on the direct transmission process of parents skills into children

skills.

2Consider the case where one has to compare two countries, both giving the same distribution of skills
s1 and S1 with average s1 and thereby the same inequality of opportunity (Figure 2(a)). In both cases,
the source of inequality of opportunity comes from differences in parental investments in early age, while
all people are exposed to the same accumulation mechanism. Nevertheless, the country characterized by
a concave accumulation process would display a larger average distribution of skills if sources of unequal
distribution of opportunities were removed (s(s0) > s1), implying that actual inequality of opportunity
in this country not only has produce a skill gap across children from different family backgrounds, but
it has also deteriorated the overall average performance. All social evaluation functions would likely
rank this country as less-opportunity egalitarian, implying that evaluations based on data (s1, S1) would
over-estimate inequality of opportunity.
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Consider for instance the situation in Figure 2(b). Let A and B represent two skills ac-

cumulation processes in two countries. Each country displays only one accumulation pro-

cess, implying that inequalities in opportunities for skills acquisition has to be traced down

to differences in the initial conditions, and how these differences interact with the skill

accumulation process. In this example, comparing inequality of opportunity in the distri-

bution with average skills levels (sA1 , S
A
1 ) with the distribution with skills levels (sB1 , S

B
1 )

would capture the implications that the skills accumulation process has on the initial

inequality of opportunity, as measured by (s0, S0) in both cases. The skills accumulation

processes in both countries are fair but different, but the initial distribution of skills is

not. The interaction among the two components generates differences in inequality of

opportunity.

A second example is that in which country B, displaying a fair process but starting

with a very unequal distribution of opportunities, displays skills distribution (sB1 , S
B
1 ) and

is compared with a country displaying (s̃1, S̃1). In the latter society, which we label AB,

there is less inequality in early skills, (s̃0, S̃0), but the process of accumulation is not fair:

children from the type with skills s̃0 would face accumulation process A while children with

skills S̃0 would later face accumulation process B, more advantageous. This can be, for

instance, an outcome consistent with early tracking, which imposes career assignment on

the basis of early skills development. Evaluating the inequality of opportunity of society

(s̃1, S̃1) against society (sB1 , S
B
1 ) would likely mask the consequences of different channels.

On the one hand, the first society magnifies small initial gaps in opportunities though

selective and unfair education systems, which calls for policy intervention. On the other

hand, the system in the second society is fair, but the initial gap in skills endowment is

large and it is then magnified by the system. This calls for different forms of intervention.

It is key for policy purposes to distinguish the role of different channels. We do so

using counterfactual methods, which allow to keep constant some sources of inequality of

opportunities across societies, and ranking the resulting distributions once these channels

have been switched off. For instance, we use counterfactual methods to simulate the

counterfactual distribution of skills that would have prevailed in society AB if the initial
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skills distribution was that of society B, namely (s0, S0). As figure 2(b) shows, one would

have to compare the outcome distribution (sB1 , S
B
1 ) with the counterfactual distribution

(sA1 , S
B
1 ).

To do so, we exploit variation across age of comparable children to identify and decom-

pose the role of initial skills distribution and later accumulation process on the inequality

of opportunity measured by raw PISA data. Since there are no large scale assessment

surveys that follow a cohort of children, as they move up through the different grade years

of their education system, we have merged data from TIMSS 2003, TIMSS 2007 and PISA

2009. Indeed, since the children from all three databases were mostly born in 1993/1994,

we are able to assess the same birth-cohort in grade 4 with TIMSS 2003, then 4 years

later in grade 8 with TIMSS 2007, and finally 2 years later when they are aged 15 to

16 using PISA 2009. Furthermore, since all three databases provide similar background

information on the children (Parent’s education, number of books at home, various mate-

rial possessions...), one can create a new database by merging the 3 previously mentioned

databases. Finally, since multiple countries are assessed in at least 2 of the 3 databases,

we will be able to assess the evolution of 23 countries at 2 of the 3 grade years, and 11

countries - including the USA - at all 3 grade years.

2 Characterizing social welfare with equality of op-

portunity concerns

2.1 Notation

The sets of integers, non-negative integers, strictly positive integers, real numbers, non-

negative real numbers and strictly positive real numbers are denoted by N, N+, N++, R,

R+ and R++ respectively. The cardinality of any set A is denoted by #A and the k-fold

Cartesian product of a set A with itself is denoted by Ak. The inner product of an n×m

matrix a by an m×r matrix b is denoted by a.b. The k-dimensional unit vector is denoted

by 1k. For any k ∈ N++ with k ≥ 2, we denote by Sk−1 the k − 1 dimensional simplex
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defined by Sk−1 = {s ∈ [0, 1]k : s1 + ... + sk = 1}. A permutation matrix π is a square

matrix whose entries are either 0 or 1 and sum also to 1 in every line and every column.

Our notation for vectors inequalities is =, ≥ and >. A binary relation % on a set Ω is a

subset of Ω×Ω. Following the convention in economics, we write x % y instead of (x, y) ∈

%. Given a binary relation %, we define its symmetric factor ∼ by x ∼ y ⇐⇒ x % y

and y % x and its asymmetric factor � by x � y ⇐⇒ x % y and not (y % x). A binary

relation % on Ω is reflexive if the statement x % x holds for every x in Ω, is transitive if

x % z always follows x % y and y % z for any x, y, z ∈ Ω and is complete if x % y or

y % x holds for every distinct x and y in Ω. A symmetric, reflexive and transitive binary

relation is called an equivalence relation and a reflexive, transitive and complete binary

relation is called an ordering. Given an equivalence relation ∼ on Ω, and some ω ∈ Ω, we

denote by E∼(ω) the equivalence class of ω under ∼ defined by E∼(ω) = {ω′ ∈ Ω | ω′ ∼

ω}. It can be seen immediately that if ∼ is an equivalence relation, one has E∼(ω) 6= ∅

for every ω, E∼(ω) = E∼(ω′) or E∼(ω)∩E∼(ω′) = ∅ for every elements ω and ω′ in Ω and⋃
ω∈Ω

E∼(ω) = Ω so that the equivalence class of all elements of Ω under ∼ form a partition

of Ω. Such a partition is called the quotient of Ω under ∼.

2.2 Basic Framework and Definitions

We are interested in comparing societies on the basis of their performances in equalizing

opportunities among some exogenously given groups of individuals. These groups can

be based on religion, race, gender, family backgrounds, etc. Our approach to appraising

equality of opportunities does not enquire about the origin of these groups. We neither

assume that the number of such groups is the same across societies. For instance, we may

consider societies formed by one group only. Our approach would then view such one-

group societies as achieving (trivially) perfect equality of opportunities. The opportunities

offered to a group in a society are described by the fraction of individuals in this group

who achieve any relevant outcome. We assume specifically that there are k such outcomes.

We could view these outcomes as anything that individuals have reason to value and that

are observable somehow. Examples would include income categories, or education levels.
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It is somewhat important for the analysis conducted here that these various outcomes be

in finite number.

We hence depict a society p as an n(p)× k row stochastic matrix:

p =


p11 ... p1k

... ... ...

pn(p)1 ... pn(p)k


where pij, for i = 1, ..., n(s) and j = 1, ..., k denotes the probability that an individual

coming from group i achieves outcome j in society p. We denote by pi the lottery (prob-

ability distribution over Rk) associated to group i in society p. A society p with n(p)

groups is therefore an element of (Sk−1)n(s) and the set of all logically conceivable such

societies is
⋃

l∈N++

(Sk−1)l. If p is a society in (Sk−1)m and p′ is a society in (Sk−1)n, we

denote by (p,p′) the society in (Sk−1)m+n where the m first groups face the lotteries

associated to p and the n last groups get face the lotteries, in the same order, in p′. For

any lottery p in Sk−1, we denote by p the one group society in which all members face the

lottery p. We notice that depicting societies as lists of probability distributions, with one

such list for every group, makes sense only if one adopts an anonymous postulate that

”the name of the group does not matter”. The fact that these groups are cast, races or

religions has no importance for appraising opportunities. The only relevant feature of the

society is the distribution of the ethically relevant outcomes within each group.

Alternative societies are to be compared by an ethical observer or a philosopher who

is placed behind a ”veil of ignorance” as to the group to which he (she) would belong if

he (she) was to live in the various societies. We assume that such ethical observer uses

the ordering %, with asymmetric and symmetric factors � and ∼ respectively to compare

these societies. We interpret the statement p % p′ as meaning ”I would weakly prefer

starting my life in society p than in society p′ ”. A similar interpretation is given to the

statements p � p′ (strict preference) and p ∼ p′ (indifference). Since the ordering %

is defined on the whole set
⋃

l∈N++

(Sk−1)l, it is in particular defined on the set Sk−1 of all

conceivable one-group societies and, therefore, of all lotteries.
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We start by identifying the properties (axioms) of % that are necessary and sufficient

for the existence of a function Ψ : Sk−1 → R such that, for all societies p and p′ in⋃
l∈N++

(Sk−1)l, one has:

p % p′ ⇐⇒
n(p)∑
i=1

Ψ(pi)

n(p)
≥

n(p′)∑
i=1

Ψ(p′i)

n(p′)
(2)

An ordering satisfying this property could therefore be thought of as resulting from the

comparisons of the average evaluation of the lotteries offered by two compared societies

for some evaluation function, under the assumption that the ethical observer is equally

likely to fall in any group. Notice that formula (2) defines in fact a family of social criteria,

with as many members as there are logically conceivable functions Ψ. We shall discuss

below how one could restrict this family a bit by imposing some additional property on the

ranking of single groups societies or, equivalently, lotteries. The key assumption that we

shall use on this matter is that the ranking of lotteries obey the standard VNM properties.

If this is the case, then one could write, for any p ∈ Sk−1, the function Ψ by:

Ψ(p) = Φ(
k∑

h=1

phαh) (3)

for some real numbers α1, ..., αk and some function Φ : R −→ R. In this specification, the

real numbers α1, ..., αk are interpreted as the utility evaluation, made by the philosopher,

of the various outcomes. Hence the expression
k∑

h=1

phαh constructed with these numbers

can be seen as the expected utility associated to the lottery p, and the function Φ can be

seen as a transformation of this expected utility into some magnitude, which reflects the

attitude of the ethical observer with respect to ambiguity.

Following (Gravel, Marchant, and Sen 2012), we refer to any ranking that satisfies (2)

for some function Ψ as to a Uniform Expected Utility (UEU) ranking of societies. This

name comes from the decision under ignorance context in which this family was studied.

Indeed, any ranking of societies that is numerically represented by (2) for some function

Ψ can be though of as resulting from the comparison of the expected utility of the various

lotteries offered by the societies, under the (uniform) assumption that the ethical observer
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assigns an equal probability to belonging to every group.

We now introduce the four axioms that characterize the UEU family of social rankings.

In line with the discussion above, the first axiom requires the social ranking to be

anonymous. That is, the names or the nature of the groups do not matter for appraising

the disparity of opportunities between groups in a society. Hence all societies who offer

the same distributions of outcomes among the same number of groups are normatively

equivalent. We state formally this axiom as follows.

Axiom 1 (Anonymity) For every society p ∈
⋃

l∈N++

(Sk−1)l, and all n(p) × n(p) permu-

tation matrix π, one has π.p ∼ p.

The second axiom imposed on % is a continuity condition, imposed on the comparison

of a one-group society vis-à-vis any other society. It says, roughly, that the strict ranking

of a single lottery associated to a one-group society vis-à-vis any other society should be

robust to ”small” changes in the probabilities of achieving any given outcome. Its formal

statement is as follows.

Axiom 2 (Continuity) For every society p, the sets B(p) = {ρ ∈ Sk−1 : ρ % p},

W (p) = {ρ ∈ Sk−1 : p � ρ} are both closed in Rk.

The next axiom is called averaging in (Gravel, Marchant, and Sen 2012). In the current

context, the axiom evaluates what happens to the disparity of opportunities in a given

society when the number of groups is enlarged. It says that if the disparity of opportunities

in the added groups is better (worse) than what they are in the initial society, then

the addition of those groups improves (deteriorates) the disparity of opportunities. It

says also, conversely, that if a society loses (gains) from identifying new groups with

specific distributions of outcome among their members, then this can only be because the

distribution of outcomes within those groups is worse (better) than that already present

in the original society. This axiom is formally stated as follows.

Axiom 3 (Averaging) For all societies p and p′ ∈
⋃

l∈N++

(Sk−1)l, p % p′ ⇔ p % (p,p′)⇔

(p,p′) % p′.
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When applied to an ordering, the Averaging axiom implies several other properties.

One of them is the axiom called ”replication equivalence” by (Blackorby, Bossert, and

Donaldson 2005) (p. 197) in the somewhat different context of population ethics. This

axiom states that, for societies where every group faces the same opportunities, the number

of those groups does not matter. This property is rather natural in the context of equalizing

opportunities. If all groups in a society were offering the same opportunities, then the

number of those groups would be irrelevant. We state formally this property as follows.

Condition 4 (Irrelevance of the number of groups in case of equal opportunities) For

every lottery ρ ∈ Rk and every society p ∈
⋃

l∈N++

(Sk−1)l such that pi = ρ for all i =

1, ..., n(p), one has p ∼ ρ.

This condition is implied by averaging if % is reflexive. The proof of this claim is left

to the reader.

The next, and last, axiom that requires the ranking of any two societies with the same

number of groups to be robust to the addition, to both societies, of a common distribution

of opportunities. That is to say, the ranking of any two societies with the same number

of group should be independent from any group that they have in common. Formally, this

axiom is stated as follows.

Axiom 5 (Same number group independence) For all societies p, p′ and p′′ ∈
⋃

l∈N++

(Sk−1)l

such that n(p) = n(p′), (p,p′′) % (p′,p′′) if and only if p % p′.

It can be checked that any UEU ranking satisfies anonymity, continuity, averaging and

Same Number Group Independence. (Gravel, Marchant, and Sen 2012) (see also (Gravel,

Marchant, and Sen 2011)) have established the converse implication. Hence, one has:

Theorem 6 Let % be an ordering on
⋃

l∈N++

(Sk−1)l satisfying anonymity, continuity, av-

eraging and same number expansion consistency. Then % is a UEU social ordering. Fur-

thermore, the function Ψ of Expression (2) is unique up to a positive affine transformation

and is continuous.
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Theorem 6 does not restrict in any way the function Ψ. Yet, one may wish to do so.

A somewhat natural restriction would be to require the ranking of one-group societies -

for which the issue of disparities of opportunities among groups vanishes - to obey the

well-known VNM axiom. This would amount to add the requirement that % satisfies the

following axiom.

Axiom 7 (VNM for One-Group societies) For every lotteries p, p′ and p” ∈ Sk−1 and

every number λ ∈ [0, 1], p % p′ if and only if λp+ (1− λ)p′′ % λp′ + (1− λ)p′′.

It is then immediate to obtain the following result (see e.g. Proposition 6 in (Gravel,

Marchant, and Sen 2012)).

Proposition 1 Let % be an ordering on
⋃

l∈N++

(Sk−1)l satisfying anonymity, Continuity,

Averaging, Same Number Group Independence and VNM for One-Group Societies. Then

% is a UEU social ordering and the function Ψ of Expression (2) can be written as per

Expression (3) for some function Φ : R→ R and some real numbers α1, ..., αk.

Ethical observers who rank societies behind a veil of ignorance may be distinguished

according to what could be called ”aversion to inequality of opportunities”. Intuitively,

aversion to inequality of opportunities would correspond to a preference for societies who

exhibit no disparity of opportunities - say because they are made of one single group -

over societies who exhibit some disparity of opportunities among their different groups.

This suggests the following notion of comparative aversion to inequality of opportunities

among ethical observers.

Definition 8 Given two rankings %1 and %2 of all societies in
⋃

l∈N++

(Sk−1)l , we say that

%1exhibits at least as much aversion to inequality of opportunity as %2 if, for every lottery

ρ ∈ Sk−1 and society p ∈
⋃

l∈N++

(Sk−1)l , ρ %2 p =⇒ ρ %1 p.

In words, an ethical observer who compares societies by means of the binary relation

%1 exhibits at least as much aversion to inequality of opportunities as another who bases

his/her comparisons on %2 if any preference that the later will have for a society with
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no inequality of opportunities (as compared to any reference society) would also be en-

dorsed by the former. It is not difficult to see that this notion of ”comparative aversion

to opportunity inequality” can translate, when expressed for UEU rankings, into a state-

ment of ”comparative concavity” applied to the function Ψ of Expression (2). Specifically,

the following proposition can be established (see (Gravel, Marchant, and Sen 2012) for a

proof).

Proposition 2 Let %1 and %2be two orderings on
⋃

l∈N++

(Sk−1)l which can be represented

as per (2) for some functions Ψ1 and Ψ2 respectively (both having Sk−1 as a domain and

R as a range). Then %1exhibits at least as much aversion to inequality of opportunity as

%2as per Definition 8 if and only if there exists some increasing and concave function g

having the image of R under Ψ2 as domain and R as range such that, for every p ∈ Sk−1,

one has Ψ1(p) = g(Ψ2(p)).

Hence, for comparisons of societies made by a UEU criterion, the statement ”has more

aversion to opportunity inequality as” can be translated into ”has a more concave eval-

uation function Ψ as”. While this is reminiscent of standard definition in the context of

standard inequality measurement, there is an important difference. In the usual income

inequality setting, there is a (natural ?) benchmark to define ”neutrality to income equal-

ity”. An ethical observer concerned about distributions of incomes is usually considered

as being neutral vis-à-vis income equality if it considers as equivalent all income distribu-

tions that have the same per capita income. Given this benchmark, it is standard to define

someone has exhibiting aversion to inequality ”in the absolute” if this person exhibits more

aversion to income inequality than a person who is neutral to inequality. In the current

setting, we are not aware of the existence of a well-accepted standard of neutrality toward

equality of opportunities. One such benchmark could be to consider all societies with the

(symmetric) average lottery (with the symmetric average calculated across groups) to be

equivalent. Formally, this would amount to define neutrality with respect to equality of

opportunities as follows.

Definition 9 An ordering % on
⋃

l∈N++

(Sk−1)l is said to exhibit neutrality with respect
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to equality of opportunities if for any two societies p and p′ in
⋃

l∈N++

(Sk−1)l such that

n(p)∑
i=1

pi

n(p)
=

n(p′)∑
i=1

p′i

n(p′)
, one has p ∼ p′.

When applied to a UEU ranking of societies, this definition of neutrality with respect

to equality of opportunities implies that the function Ψ that represents such a ranking as

per Expression (2) is linear. We state this formally as follows.

Proposition 3 Let % be an ordering on
⋃

l∈N++

(Sk−1)l that can be represented as per (2)

for some functions Ψ. Then % exhibits neutrality with respect to equality of opportunities

if and only if, for every lottery p ∈ Sk−1, one has Ψ(p) =
k∑
j=1

βjpj for some real numbers

β1, ..., βk.

Proof. TO BE PROVIDED (EASY).

If one agrees with this standard of neutrality with respect to equality of opportunities,

then would could define an ethical observer as exhibiting aversion to inequality of oppor-

tunities whenever the observer has more aversion to inequality of opportunities than an

observer who exhibits neutrality with respect to equality of opportunities.

2.3 Extensions: the empirical case

Now, a society can be seen as a population of N individuals partitioned into n types, each

type i = 1, . . . , n gathers Ni individuals each facing the same distribution of opportunities

for skills acquisition.

With ideal data, we would like to infer opportunity distribution for each of the N

individuals, thus capturing the full set of implications related to each individual own

background. In this case, the welfare model in (??) perfectly suits the purpose of as-

sessing inequality of opportunities for skills acquisition, where each parental background

would represent a type of family background with its direct influences on the individual

distribution of opportunities for skills acquisition.
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With less then ideal data, estimation of opportunity profile has to be limited to the

n types, the Ni individuals in type i serve to estimate the type i opportunity profile.

Hence, some heterogeneity is lost in the process and inequality of opportunity compar-

isons concentrate on fewer types in the population (n < N). With replication invariance

properties of the welfare ordering, one can always represent a society by a matrix with N

rows, the distribution of opportunities attached to each individual in type i being repli-

cated Ni times. Welfare with this matrix evaluated with (??) should coincide with welfare

evaluated with (1).

I will focus in what follows on the welfare model (1), and show which types of impli-

cations we face when instead we want to represent data with model (??).

3 Comparing situation on the basis of their social

welfare: general case

3.1 Inequality of opportunity reducing transformations

We investigate transformations that, when applied to the data p, give p′. We study trans-

formations that have a clear interpretation in terms of their consequences on inequality

of opportunity and that do not produce effects on the population distribution of skills.

We consider distribution matrices with n(p) types, where types have variable weights

p1, p2, . . . , pn(p). We consider a population model: we assume a uniform population which

is distributed on [0, 1], implying pi ∈ R+. This assumption is valid and meaningful for

a population model, where one can assume an infinity of agents populating the economy

(but a finite number of types n(p), which might differ across distributions).3

Transformation T1 A permutation of types transformation (T1) occurs whenever p′ =

Π ·p and (p′1, . . . , p
′
n(p′)) = (p1, . . . , pn(p)) ·Πt, where Π is a n(p)×p permutation matrix.

3We will discuss how the operations can be eventually redrafted when one considers an empirical
model, that is one is interested in the welfare generated in the underlying sample. Under the assumption
that all N(p) individuals receive a uniform sample weight 1/N(p), the type i size is pi = Ni(p)/N(p)
which is a rational number. The empirical model sets restrictions on the admissible operations that we
can explicitly consider.
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Any permutation of types transformation preserves welfare and inequality of opportunities

as long as evaluations are independent on the name of the types (but depends on their skills

opportunities distribution). In practice, a distribution of skills opportunities associated

to a type i is regarded to as ”detrimental” to social welfare because it implies high chances

that low realizations occurs (for instance, because pi1 is very high) rather that because

type i is perceived as an unfavorable type (for instance, it represent the most economically

deprived parental background).

Transformation T2 An empty type transformation (T2) involves adding or deleting an

additional type ”0” with distribution of opportunities π = (π1, π2, . . . , πk) and population

weight p0 = 0 so that the matrix p′ coincides with matrix p augmented by one additional

row π and n(p′) = n(p) + 1. Type 0 is a phantom. Hence it should not affect measured

welfare or mobility. One implication of the operation is that irrelevant types, i.e. types

that are not likely to be observed in a society, do not contribute to welfare and inequality

of opportunity.

Transformation T3 A replication of a types transformation (T3) is implemented by

splitting the population of a type i, with 1, . . . , i, . . . , n(p) of size pi into two new types

i1 and i2 such that all individuals in types i1 and i2 face the same distribution of oppor-

tunities of group i, that is pij = p′i1j = p′i2j and phj = p′hj for every outcome class j and

every individual h 6= i, and n(p′) = n(p) + 1. After the transformation, the society p′

displays one additional type gathering individuals that face the same skills opportunities

distribution as the individuals in group i (compared to p, the matrix p′ has one additional

row which is a replica of row i), and have weights p′i1 + p′i2 = pi, where p′i1 = αpi with

α ∈ [0, 1]. This operation does preserve welfare and inequality of opportunities: it says

that if a given type is split according to an irrelevant characteristics (such as splitting the

group of people with low parental background into those having parents with light-colored

eyes and those having parents with dark-colored eyes), then one expect both new types

to face the same opportunity distributions (it is reasonable to assume that parents eye

color does not affect one opportunity profile per se). If this is the case, then welfare and

19



inequality of opportunity do not change.4

Transformation T4 A uniform mixture of distributions of skills opportunities trans-

formation (T4) occurs whenever the distributions of skills opportunities of any two types

i and i′ are compounded into a new distribution according to the demographic weight

of each type, and individuals from both types experience this new distribution of skills

opportunities after the transformation. Formally, p′ij = p′i′j = wii′pij + (1 − wii′)pi′j with

wii′ = pi/(pi + pi′) and phj = p′hj for any outcome class j and every types h 6= i, i′.

After the transformation, both groups i and i′ share the same compounded distribution.

The intuition behind this transformation is opposite to that of the replication of a type.

Consider two types of low economic parental background, one gathers people grown in

urban areas (type i), supposedly facing larger opportunities of acquiring skills, and other

raised as child in rural areas (type i′). Since being raised in urban or rural areas has

implications on skills opportunities, we expect the distributions associated to types i and

i′ differ. Coherently with the overall model, which assumes that circumstances have a

distributional effect on skills but are irrelevant from an efficiency perspective (urban and

rural areas differ because opportunities are not equally available in both locations be-

cause agglomeration plays an important role in directing public spending and investment

on skill-enhancing public goods for a given budget), then if differences across two groups

were neutralized (this could be the case if skills-enhancing technologies are made avail-

able at the same intensity in urban and rural areas), we expect that differences across

groups induced by the additional irrelevant circumstance (living in urban or rural areas)

are smoothed and distributions converge to the average distribution.5 We regard the sit-

uation in which distributions converge uniformly to the expected distribution as reducing

inequality of opportunity and improving welfare.

This last operation has many attractive features. First, it preserve the population

average distribution. Second, it preserve the number and size of the groups. Third, it is

consistent with the replication of types operation: if a uniform mixture transformation

4The transformation has an appealing interpretation within the population model, where population
is uniform distributed within each type.

5Example kindergarten

20



involves two types that differ exclusively for an irrelevant attribute (such as the color of the

eyes before, we hence expect both types to face the same skills opportunity distribution),

then after the operation they will still share the same distribution of skills.

3.2 Testing the welfare criterion

A Zonotope set associated to any given matrix represents all the vectors that can be

reached from the Minkowsky sum of the matrix rows. Consider a column-stochastic matrix

A of size n×k such that each of the k column vectors of A belongs to the k-variate simplex.

Let use ai with i = 1, . . . , n indicate a row vector of the matrix. We define the zonotope

set Z(A) ∈ [0, 1]k as

Z(A) =

{
z = (z1, . . . , zk) : z =

n∑
i=1

θiai, θi ∈ [0, 1] ∀i = 1, . . . , n

}

For a given matrix p representing distributions of opportunities defined over k out-

comes for n(p) types (the matrix is hence row stochastic), we denote the n(p)× k matrix

p̃ where p̃ij = pipij for any i, j the joint distribution density of types and outcomes in the

society. Formally:

p̃ =


p̃11 ... ... ... p̃1k

... ... p̃ij ... ...

p̃n(p)1 ... ... ... p̃n(p)k


Here, p̃ij is the probability that a person is of type i and achieves outcome j. Aggregating

the densities across the classes of realizations, one obtains the population marginal weights∑k
j=1 p̃ij = pi for any i. The column vector of population weights is simply denoted

p = (p1, . . . , pn(p))
t. Aggregating the densities across types one obtains the marginal

distribution of skills opportunities across the population, which coincide with the average

distribution of skills across the population:
∑n(p)

i=1 p̃ij = pj for all j = 1, . . . , k.

The focus of this section being on comparisons of distribution matrices that have the

same skills margins (but not necessarily the same types margins), we standardize the joint

density by p1, . . . , pk, which gives the n(p)× k matrix p̃ · diag(p)−1. Any element of this
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matrix writes as
p̃ij

pj
=

pipij

pj
for any type i and outcome class j, where pi is the demographic

size of group i. Formally:

p̃.diag(p)−1 =


p̃11
p1

... ... ... p̃1k

pk

... ...
p̃ij

pj
... ...

p̃n(p)1

p1
... ... ...

p̃n(p)k

pk


We interpret

p̃ij

pj
as the conditional probability that a person achieving outcome j is of

types i (the construction exploits the Bayes rule). Hence p̃·diag(p)−1 is column stochastic.

In the spirit of the Lorenz curve, we study the Lorenz Zonotope LZ ∈ [0, 1]k+1 of

a matrix p, which is a k + 1 dimensional Zonotopes reporting the conditional groups

distributions and the population margin, and is defined as:

LZ(p) := Z
(
(p, p̃ · diag(p)−1)

)
,

where

(
p, p̃.diag(p)−1

)
=


p1

p̃11
p1

... ... ... p̃1k

pk

pi ... ...
p̃ij

pj
... ...

pn(p)
p̃n(p)1

p1
... ... ...

p̃n(p)k

pk


The LZ satisfies interesting properties. If opportunities for skills acquisition are inde-

pendently distributed with respect to individual circumstances (implying that the rows of

p coincide), then the Lorenz Zonotope coincides with the diagonal of cube that contains

it.

By construction, the Lorenz Zonoid is always a k-dimensional hyperplan lying on a k+1

dimensional space. However, one dimension here is redundant. From p̃ one can derive both

margins, implying that the population weights distribution p is redundant. Nevertheless,

LZ inclusion is equivalent to inclusion of the LZ projections. We produce results based

on the LZ and resort to its projection only for graphical/expositional purposes.
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3.3 A preliminary result

The first result concerns welfare comparisons of two societies p and p’ that differ in

the number and population density of the types (p and n(p) possibly different from p′

and n(p′)). For each society we study the inequality of opportunity for skills acquisition

by focusing on how dissimilar are the distributions of skills opportunities across types.

We compare distributions with the same margin, i.e. with fixed population distributions

(p = p′). Hence, the welfare measure that we consider are capturing exclusively differences

across societies in terms of inequality of opportunity.

Theorem 10 For any pair of societies represented by opportunity distribution matrices

p and p′ with p = p′, the following statements are equivalent:

1. The distribution p′ is obtained from p through a finite sequence of transformations

T1, T2, T3, T4.

2.
∑n(p′)

i=1 p′iφ
(∑k

j=1 ujp
′
ij

)
≥
∑n(p)

i=1 piφ
(∑k

j=1 ujpij

)
for all φ increasing concave and

for any u1, . . . , uk.

3. LZ(p′) ⊆ LZ(p).

Proof. We prove that 1)⇒ 2)⇒ 3)⇒ 1). See appendix A.1

Discussion evolves on two separate lines. First, the theorem allows to produce welfare

comparisons when the opportunity marginals coincide. When they do not, LZ inclusion

can still be tested. However, equivalences with 1) breaks down: T1-T4 preserve the op-

portunity distribution margin. Also condition 2) has to be refined: as in Koshevoy Mosler,

the welfare criterion produce relative evaluations of inequality of opportunity based on

the function
∑n(p)

i=1 piφ
(∑k

j=1 uj
pij

pj

)
, in a similar way the welfare function in KM is based

on the distribution of goods shares rather than the distribution of goods (given that two

allocations may differ in terms of goods endowments). The ratio
pij

pj
=

p̃ij

pipj
captures the

discrepancy between the actual joint density of parental background and opportunity dis-

tribution, and a counterfactual distribution obtained under the assumption that parental

23



background circumstances and skills opportunities are independently distributed. The ra-

tion is then a measure of associated between skills opportunities and parental background.

By considering relative skills distributions, we can find an upper bound for welfare

φ(
∑k

j=1(uj)), which coincides with the case
p̃ij

pipj
= 1 for all i and j. This number can

be used to construct a relative inequality of opportunity measure IOPφ,u ∈ [0, 1] defined

over distributions p (population weights), p̃ (the joint density) and p (the opportunity

distribution in the population). The index IOPφ,u measures inequality of opportunity

as a form of distance from a welfare-maximizing allocation of opportunities across types.

When welfare is maximal, i.e. W (p) = φ(
∑k

j=1(uj)) = maxW , inequality of opportunity

should be zero. Otherwise the measure should increase with the degree of association of

opportunities and parental background. Hence, we can construct a ratio-scale measure of

inequality of opportunity:

IOPφ,u = 1− W (p)

maxW
= 1− 1

φ(
∑n(p)

1 uj)

n(p)∑
i=1

piφ

(
k∑
j=1

uj
p̃ij
pipj

)
.

Different indices of relative IOP can be crafted upon suitable choices of φ and u.6

Nevertheless, one might be interested in welfare evaluations even when averages differ.

We cover this case in section 4.

A second line of discussion concerns the interpretation in cases where the population

is finite and countable (of size N) and types weights can be expressed as pi = Ni

N
. In these

situations, axioms have to be refined slightly, as we motivate in the following section.

6If, for instance, uj = 2(1 − j
k ) (the Gini social welfare function weights) and φ linear, implying

maxW = φ(
∑k
j=1 uj) = k − 1, then IOP =

∑n(p)
i=1 pi

1
k−1

∑k
j 2(1− j/k)ρi(j) =

∑n(p)
i=1 pi (µi(1−Gi)),

where ρij = p̃ij

pipj
and ρi(j) are arranged in increasing order (implying ρi(j) ≤ ρi(j+1) for every j), µi =∑k

j=1
1
kρij and Gi = 1− 2

µi

∑k
j=1 (1− j/k)ρi(j) is the Gini index of the distribution ρi1, . . . , ρik. According

to this parametric choice of φ and u, inequality of opportunity for skills acquisition can be measured as
an average of type-specific Gini indices, assessing the intensity of association in parental background and
skills opportunities.
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3.4 The case with discrete (empirical) populations

The ”population model” (continuous population) can be meaningfully adapted to measure

social welfare from a sample of data of size N where type i = 1, . . . , n(p) population is Ni.

Individuals are uniformly weighted 1
N

, implying that pi =
∑Ni

h=1
1
N

= Ni

N
. In this context,

transformations T2, T3 and T4 are unappropriate. We replace them with the equivalent

counterparts.

We assume from the outset that data are reported at the individual level: welfare in

a sample of N(p) individuals is represented by a matrix p of size N × k. Each row of

the matrix reports a distribution of opportunities faced by an individual i in the society.

This distribution is replicated across all individuals belonging to the same type. Each

individual weight is pi = 1
N(p)

.

Transformation T5 A population replication transformation (T5) allows to replicate

each of the individuals in the distribution α-times, with α an integer positive number larger

than one. This operation has implications on the way data are represented. Each replica

of individual i shares the same distribution of opportunity as i. After the transformation

T5 generating situation p′ from p, the population weights are adjusted so that p′i =

1
αN(p)

for every i = 1, . . . , αN(p′). The matrix p is extended accordingly: each row

is replicated α-times, to obtain a new distribution matrix p′ of size αN(p) × k. The

operation is nevertheless regarded as neutral with respect to social welfare and inequality

of opportunity.

Transformation T6 A uniform transfer of opportunities transformation (T6) consists

of a uniform Pigou-Dalton transfer of probability masses involving the opportunity profiles

of two individuals. The intensity of the transfer of probabilities is regulated by a parameter

α ∈ [0, 1], such that T6 can be equivalently described as a compounding of opportunity

distributions across two types. When transformation T6 is applied to matrix p and

concerns two individuals i and i′, it produces matrix p′ such that N(p′) = N(p), p′ij =

(1−α)pij +αpi′j and p′i′j = αpij +(1−α)pi′j while p′hj = phj for all h 6= i, i′ and for all j =

1, . . . , k. The operation is such that p′j = pj for any realization class. This transformation
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corresponds to compounding opportunity profiles across at least two individuals, thus

reducing dissimilarities and the intrinsic association between background and opportunity

distributions. In the spirit of income inequality measurement, we retain this operation to

be welfare improving.7

Corollary 11 For any pair of societies represented by opportunity distribution matrices

p and p′ with p = p′, the following statements are equivalent:

1. The distribution p′ is obtained from p through a finite sequence of transformations

T1, T5, T6.

2.
∑N(p′)

i=1
1

N(p′)
φ
(∑k

j=1 ujp
′
ij

)
≥
∑N(p)

i=1
1

N(p)
φ
(∑k

j=1 ujpij

)
for all φ increasing con-

cave and for any u1, . . . , uk.

3. LZ(p′) ⊆ LZ(p).

Proof. We prove that 1)⇒ 2)⇒ 3)⇒ 1). See appendix A.2.

In what follows, we discuss and demonstrate extensions of the model to the case of

variable means within the framework of the corollary.

4 Comparing situation on the basis of their social

welfare: increasing utilities

Theorem 10 offers equivalent criteria to test a very restrictive notion of social welfare.

Some meaningful restrictions however apply. For instance, outcomes categories 1, . . . , k

are arranged in increasing order, implying that well-being comparisons should be limited

to all utilities u1, . . . , uk such that uj ≤ uj+1. This additional requirement has three

implications for the results in Theorem 10.

7Any T6 operation can be equivalently reformulated through a T-transform matrix, justifying the
reference to the Pigou-Dalton transfers in the multidimensional settng. Following Andreoli Zoli, it can be
shown that every transformation T6 can be seen as the outcome of a specific sequence of transformations
involving T2, T3 and T4. This result is consistent with the informational loss that applies to the current
setting, where individual weights are fixed to 1/N .
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First, it provides an additional restriction to be satisfied by the welfare criterion in

statement 2) of the theorem, implying less demanding welfare criterion for ranking soci-

eties. It can in fact be the case that there exist pairs of societies that fail to be ranked

according to all vectors u1, . . . , uk, but can still be ranked by those vectors displaying

increasing well-being coefficients.

The second implication is that the underlying concept of welfare is now sensitive to

improvements in opportunities transformation (T7). This consists in obtaining matrix

p′ from p by transporting a small probability mass ε assigned to outcome j by the op-

portunity distribution of individual i towards outcome j + 1, such that p′ij = pij − ε,

p′ij+1 = pij+1 + ε and p′ij = pij in all other cases. Any such operation induces a first order

stochastic dominance improvement in individual i opportunities in matrix p′ compared

to p, implying an improvement in social welfare. The implications of the improvement in

individual is opportunities are reflected in the improvement of the average opportunity

distribution p′ which stochastic dominates p.8

Consistently, the third implication is that LZ inclusion cannot be used as a valid

empirical test for the restricted welfare model. LZ inclusion criterion has to be weakened,

we propose to do so by studying the inclusion of what we call the Generalized Lorenz

Zonotoep. We discuss the implications of weakening the welfare dominance criterion in

the simple case with just two outcomes, which allows to pin down the different steps behind

the construction of a generalized LZ. We then provide the result within the general setting.

4.1 Example: The case with two outcomes

We consider distributions of opportunities for bad (1) and good (2) outcomes. In the

examples, we consider distributions of opportunities for N individuals represented by

N×2 matrices. For some of these individuals, distributions of opportunities can coincide.

We are interesting in ranking matrices p and p′ when the population distributions of

8An improvement in opportunities produce efficiency gains and in the population distribution even
when they increase inequality of opportunity. On the contrary, changes in the degree of association of
parents background and opportunities produce welfare consequences only when they reduce underlying
inequality of opportunities.
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Figure 2: LZ for matrices p (blue) and p′ (red).

opportunities, p and p′ may differ.

Within this setting, let assume first that distribution p and p′ are such that N(p) =

N(p′) = 4, and

p =


0 1

0 1

1 0

1 0

 p′ =


0 1

0 1

0 1

1 0

 ,

such that p = (1
2
, 1

2
) and p′ = (1

4
, 3

4
). The Lorenz Zonotopes of these matrices are as in

figure ??. Both Lorenz Zonotopes lie on a separate hyperplane, for the reasons explained

in the examples reported in the appendix. However, inclusion of Lorenz Zonotopes cannot

be claimed as the two intersect along the hypercube diagonal.9

Projections of the LZ on the k = 2 dimensional square generated by distributions of

outcome 1 and outcome 2 would coincide, thus failing to register this overlapping. This

happens because the two distribution display different population distributions of oppor-

tunities, with p′ stochastic dominating p. To incorporate these differences in evaluation,

9In fact, the population weights (here constant and equal to 1
4 ) can be obtained by a linear combination

of the columns of the matrices p and p′ respectively. In the respective cases, the weights should coincide
with population distribution of opportunities p and p′. The fact that p 6= p′ implies the differences in
slopes of the hyperplane supporting each LZ.
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Figure 3: The unscaled LZ (z0 is the population ordinate, z1, z2 are for bad and good
outcomes) of p (blue) and p′ (red) along with the extensions towards all distributions
that are dominating in the sense of SD1, panel a), and their projection on the outcome
axis.
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we represent the data by the Unscaled Lorenz Zonotopes Z((p, p̃′)) and Z((p, p̃)), where

p = (1
4
, 1

4
, 1

4
, 1

4
). The original hypercube containing the LZ is now stretched to reach size

(1, p1, p2) = (1, 1
2
, 1

2
) for p and (1, p′1, p

′
2) = (1, 1

4
, 3

4
) for p′. Panel a) in figure 3 reports

such zonotopes.

The diagonal line connecting the extremes of the axis reporting the zonotope coordi-

nates z1 and z2 represent all admissible combinations of population distribution probabil-

ities p1 and p2 such that p1 + p2 = 1. What the picture intuitively shows is that moving

north-west welfare increases due to (first order SD) improvements in the population dis-

tribution. Welfare deteriorates moving south-east, unless the utility weights are such that

u1 ≥ 0 and u2 ≤ 0, a case that clearly violates the underlying assumption of increasing

utility weights (u1 ≤ u2).

We then consider the possibility of constructing an Generalized Lorenz Zonotope based

on the knowledge of (p, p̃) distribution and on the assumption of increasing weights. The

generalized LZ, GLZ ∈ [0, 1]3, extends in additive form the zonotope Z((p, p̃)) towards

the set of points where there is clear sign of welfare dominance (i.e. to all points on the

2 + 1 space that can be reached from any point z ∈ Z((p, p̃))). This set is identified in

different colors on the graph and is identified as follows:

GLZ(p) = Z((p, p̃)) + (R+ ×G2) ,

G2 = {(−1, 1)z : z ∈ R+}.

As the graph shows, we now conclude that GLZ(p′) ⊆ GLZ(p) as somehow expected: in

fact, p′ is obtained from p by an improvement in the situation of individual i = 3, which

leads to an unambiguous increase in social welfare, despite both matrices display cases

where inequality of opportunity is maximal.

The two zonotopes Z((p, p̃)) and Z((p, p̃′)) lie again on hyperplanes (in two dimen-

sions). Contrary to the LZ case, however, the two zonotopes now lie on the same hyper-

plane. They can be hence projected on the k = 2 dimensional space (z1, z2) without loss

of information. Their projections are marked with solid bold lines of different colors on

the picture in panel b) of figure 3. On a similar vein, projections of GLZ(p′) and GLZ(p)
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can also be represented on the k = 2 dimension space. These correspond to the perime-

ters in the same figure as above. As expected, the projection of GLZ(p′) is included in

that of GLZ(p), and it turns out to be a sufficient test for Generalized Lorenz Zonotope

inclusion.

Using projections on k = 2 dimension space allows to represent the same information

as GLZ while bringing evident representational advantages. In figure 4 we report graphs

corresponding to different situations where dominance is and is not satisfied. In panel

a), we compare two situations displaying same population distributions of opportunities

(they lie in the same square) but different degrees of inequality of opportunities. The

projection of GLZ of the case displaying equal opportunities (the lower bound coinciding

with the line segment connecting the origin to the point (p1, p2)) welfare dominates the

other case.

In panel b), we compare projections of GLZ for two situations displaying perfect

equality of opportunity but different population distributions of opportunities. The line

segment connecting the origin with (p′1, p
′
2) lies above segment connecting the origin with

(p1, p2), consistently with Generalized Lorenz Zonotope inclusion. In fact, (p′1, p
′
2) first

order stochastic dominates (p1, p2) implying higher welfare.

In panel c) it is shown that a situation displaying inequality of opportunity can welfare-

dominate another distribution displaying equality of opportunity, provided that the im-

provement in the distribution of opportunities of the dominating distribution is large

enough. This implies that the opportunity distribution of the worse-off individual in the

dominant situation should be considered an improvement over (p1, p2).

Finally, panel d) shows that GLZ inclusion may be violated even when two situa-

tions have very similar distributions of population opportunities but display significantly

different levels of inequality of opportunity.

The logic of GLZ inclusion test, as shown by the projections, is that of the GL curve.

Parallel to this result, we can show that GLZ inclusion is a necessary and sufficient test

for welfare dominance with increasing utility prizes associated to outcome lotteries. We

produce a unified result for the k-dimensional case. Intermediate cases with k = 3 and
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Figure 4: Comparisons of GLZ projections for situations that differ in average opportu-
nities distribution and in inequality of opportunity.
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k = 4 are discussed in appendix B.

4.2 Main result

We regard an improvement in opportunity distributions in term of first order stochastic

dominance as a natural candidate for producing increments in social welfare for all increas-

ing well-being functions associated to the classes of realizations. Furthermore, stochastic

dominance is well defined even when outcomes have only an intrinsically ordinal meaning.

Lorenz Zonotopes can be extended in a way consistent with the notion of stochastic

dominance. The Generalized Lorenz Zonotope provide representations of distributions of

opportunities within and across types of the population that reflect both the extent of

inequality of opportunity (i.e., dissimilarity between distributions across types) as well as

(first order SD) improvements in population opportunities (i.e., account for differences in

the welfare attribute to having opportunities equally distributed as the average population

distributions p).

As intuitively motivated in the case k = 2, 3, 4, the GLZ can be fully characterized on

the basis of the underlying improvements in opportunities that induce stochastic domi-

nance. The row vector γj = (γj1, . . . , γ
j
j , . . . , γ

j
k−1) of size k−1 such that γjj = −1, γjj+1 = 1

and γjh = 0 for all h 6= j, j + 1, identifies the direction of changes in the distribution of

opportunities due to an improvement in probabilities from class j to j + 1. Compound-

ing all these vectors, one obtains all possible improvements in the distribution p which

give distribution p′ that stochastic dominate p. The GLZ at k dimensions is extended

accordingly, which gives:10

GLZ(p) = Z((p, p̃)) + (R+ ×Gk) ,

Gk =

{
k−1∑
j=1

zjγ
j : (z1, . . . , zk−1) ∈ Rk−1

+

}
.

The main result of the paper is obtained for empirical distributions of welfare where

10The GLZ can be compared to the definition of Extended LZ in Koshevoy and Mosler, where the set
of directions of the extensions is extended to Gk = Rk+.
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individual have uniform weight and there are as much opportunity distribution in the

empirical population as individuals, although some individuals belonging to the same

type may face the same opportunity distribution. We refer to the empirical population

distribution weights by the vector p = ( 1
N
, . . . , 1

N
)t.11

We show that the inclusion test based on the empirical GLZ provides a necessary and

sufficient statistics for robust welfare evaluations of empirical opportunity distributions

even when comparing distributions p and p′ that differ in the marginal distributions of

empirical populations (N(p′) 6= N(p)) and in the distributions of opportunities in the

population (p′ 6= p). We also show that welfare dominance is supported by the existence

of simple transformations of the data that have a compelling interpretation: either they

preserve of decrease inequality of opportunity, or they have an unambiguous implications

for opportunities improvements.

Theorem 12 For any pair of societies represented by opportunity distribution matrices

p and p′, the following statements are equivalent:

1. The distribution p′ is obtained from p through a finite sequence of transformations

T1, T5, T6, T7.

2.
∑N(p′)

i=1
1

N(p′)
φ
(∑k

j=1 ujp
′
ij

)
≥
∑N(p)

i=1
1

N(p)
φ
(∑k

j=1 ujpij

)
for all φ increasing con-

cave and for any u1, . . . , uk increasing (i.e., uj ≤ uj+1 ∀j).

3. GLZ(p′) ⊆ GLZ(p).

Proof. We prove that 1)⇒ 2)⇒ 3)⇒ 1).

1) ⇒ 2) is mechanical. 2) ⇒ 3) follows if the GLZ is specified in the right way. We

think the actual representation serves the scope. 3) ⇒ 1) is by construction. You need

to show that GLZ can be written in a convenient mathematic form, and that show that

inclusion has implications that are compatible only with the transformations in 1).

11Referring to this framework simplifies exposition of results. Moreover, the setting is consistent with
the idea of using GLZ inclusion tests on the data.
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5 Empirical Application

The aim of this paper is to assess the effect of educational systems on inequality of oppo-

tunity, where oppotunity is assumed to be determined - or at least affected - by parental

background. This requires that we follow a pupil cohort over time, so that we may eval-

uate how inequality of opportunity widens or is reduced by the education system, as the

cohort advances along the grade years.

In this section, we will first explain how the database was constructed by merging 3

surveys: PISA 2009, TIMSS 2007 and TIMSS 2003. Then we will proceed to explain how

the empirical results were obtained by applying our criteria to the data. And finally we

will show and comment the results.

5.1 The Data

In this paper we have chosen to study the pace at which different education systems widen

inequality of opportunity along grade years. This requires that one should compare the

same birth cohort in different countries, and at different points in the education system.

Thus, one needs to have a database with not only multiple countries, but also multiples

grade years.

Unfortunately, although educational data which follow a cohort of students over time

do exist, these tend to focus on a specific country. The British Household Panel Survey

(BHPS) and the Panel Study of Income Dynamics (PSID) are two examples of panel

data which provide information on education, but only for the UK and the US. Using a

variety of country specific databses - each one constructed autonomously - would arguably

produce questionable results, and would raise cross-country comparability issues.

Conversely, many large scale assessment surveys have been developed on education

since the mid-1990s which include multiple countries, but they focus exclusively on a

specific grade year or age group. The Trends in International Mathematics and Science

Study (TIMSS) and Programme for International Student Assessment (PISA) are the

most prominent examples of such large scale assessment surveys.
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In order to construct a database with a birth cohort assessed at different grade years,

and in multiple countries, we have chosen to merge 3 databases: TIMSS 2003, TIMSS

2007 and PISA 2009. The approach we use here is consistent with AIGUL PAPER +

CHECCHI PAPER

In this section we will present each one of the 3 databases, and then we will explain

how they were merged together into a cohort database.

5.1.1 Large Scale Assessment Surveys

The construction of any large scale assessment survey on education poses a number of

challenges: some of which concern multi-country surveys in general, others of which are

specific to educational surveys. The former kind - applicable to all international surveys -

concern the ability of TIMSS or PISA to produce unbiased and comparable results across

countries: First, how can one make sure that a sampled population is representative of

the actual country it accounts for? Second, how does one ensure that the test results are

comparable across all coutries? And third, how could one insure that the questions in the

tests do not artificially favour some countries over others?

To meet any issues relating to sample-representativeness, TIMSS and PISA both re-

sort to a two-stage sampling process. This implies first randomly selecting a number of

schools within a country, and then randomly choosing pupils within the selected schools.

In particular, this adresses any concerns of possible selections biases, which might have

occured in the absence of random selection. Then, to correct for any possible shortcomings

of the process’ ability to produce a sample which exactly reflects the country’s population,

both TIMSS and PISA proceed to re-weight the pupils in such a way as to fit the actual

population of their respective countries.

The issues relating to the comparability of the results across all countries in the TIMSS

and in the PISA surveys, is solved by producing test sheets which are identical for all

countries. This ultimately leads to the third point, concerning the exact nature of the

test, which should be designed to measure educational skills in a meaningful way, and

without favouring some countries over other countries.
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Contrary to the PISA surveys, TIMSS studies have developed surveys which are based

on what is considered to be fundamental concepts in Maths and Science, and which are

taught as part of all national curricula. In the maths tests for instance, typical questions

included solving simple problems or computing basic arithmetics. In no case were children

tested on specific skills, excluded from their national curriculum. This means that no

nation’s curriculum could prove more suited for maximizing the TIMSS tests scores. In

contrast, the PISA surveys have developed tests which are not curricula-based, and which

instead measure the ability of children from different countries to apply Science and Maths

concepts to reel life situations. Typical questions from the PISA Maths tests require the

use of basic arithmetic to solve reel life problems. Thus the main difference between the

PISA tests and the TIMSS tests, is that the former supposedly requires slightly more

abstract thinking, whereas TIMSS requires more formal mathematical knowledge. We

argue further in the paper that the actual skills needed to complete either of the tests are

not substantially different.

Finally, TIMSS and PISA - like any other educational survey - have to deal with the

problem of grading the tests. Whereas in many education systems grading is equated

with computing the percentage of correct answers over the total number of questions,

TIMSS and PISA rely instead on what is called Item Response Theory (IRT). Commonly

used in Psychology research, IRT has been invented to facilitate the statistical analysis

of multiple answer sheets, by including what can effectively be assimilated to an error

terms. Thus IRT does not merely grade an answer sheet, but instead can provide the

probability distribution of an individual’s grade. The need for IRT stems from the fact

that an answer sheet helps to make an estimation of an individual’s skills, but it cannot be

used as an absolute evaluation of his skills. Indeed, the factors affecting an individual’s

answers include his skills, but also his motivation and Luck. Extremely poor answer

sheets for instance are likely to have been plagued by low motivation, thereby providing

an underestimate of the individual’s actual skills. Conversely, extremely accurate answer

sheets are more likely to have been affected by positive luck or cheating, thereby providing

a likely overestimation of the individual’s skills. Bearing that in mind, it follows that the
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error terms increase as one moves towards the tails of the distribution.

One of the most widespread mathematical models of IRT - and which is used in both

TIMSS and PISA - is the Rasch Model. In both surveys, one is thus provided with

5 plausible values computed using the Rasch Model, and which corresponds to 5 likely

evaluations of the individual’s skills, and based on the aggregation of his correct and

incorrect answers to the questions. As one might expect, the 5 plausible values (each

one varying between 0 and 1,000) are increasing with the number of correct answers, and

decreasing with the number of wrong answers. One might also note that the variance

between the 5 plausible values of an individual, is increasing as he moves towards to tails

of the distribution, since tail estimations have higher errors terms.

Having explained how the TIMSS and PISA surveys manage to produce internationally

comparable results, we will now proceed to detail the specific contents of the 2003 and

2007 waves of the TIMSS surveys, and then we will detail the contents of the PISA 2009

survey.

5.1.2 TIMSS 2003 and TIMSS 2007

The first TIMSS study - which was conducted in 1995 - was at the time the largest

international survey on education ever conducted. It measured the Science and Maths

abilities of children from 40 different countries at 5 separate grade years. Ever since,

TIMSS has been releasing new surveys every 4 years (1999, 2003, 2007, 2009, 2015), and

has come to focus on the measurement of children’s skills in grades 4 and 8, thus choosing

to drop grades 3, 7 and 12. The geographical scope of the surveys has been broadening

over the years, with the number of countries tested in the surveys growing from 40 in 1995

to 57 countries in 2015.

Of particular interest to this paper, is also the increasing quality and quantity of

information on the background of the pupils. Variables such as the immigration status of

each parent and the child himself, can prove useful at the very least as control variables,

and will help cancel out the effects of having a large share of immigrants on national test

results. Other variables on parental background - such as education, social status and
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Country Mean Math Score Mean Parental Education Mean number of books Obervations
Armenia 456 NA 86 4828
Australia 499 NA 116 4321
Cyprus 510 NA 72 4191

Hong Kong 575 NA 55 4557
Hungary 529 NA 95 3200

Iran 389 NA 35 4080
Italy 503 NA 65 4229

Japan 565 NA 67 4507
Latvia 536 NA 99 3580

Lithuania 534 NA 61 4165
Moldova 504 NA 49 3830

Netherlands 540 NA 89 2878
New Zealand 493 NA 99 4200

Norway 451 NA 100 4167
Philippines 358 NA 36 4419

Russia 532 NA 80 3929
Singapour 594 NA 79 6587
Slovenia 479 NA 83 2988
Tunisia 339 NA 40 3502

USA 518 NA 87 9628
Taiwan 564 NA 82 4642
Yemen 278 NA 37 3193

Table 1: TIMSS 2003 - 4th Graders

number of books at home - are indispensable to this paper since they will be used as the

basis on which to measure and compare equality of opportunity.

The specific databases of interest in this paper are the 4th graders in TIMSS 2003, and

the 8th graders in TIMSS 2007 - both of which account for the same cohort observed at

a 4-year interval. As one can see in tables 1 and 2, there are respectively 95.621 fourth

graders across 22 countries in TIMSS 2003, and 205.230 eighth graders across 47 countries

in TIMSS 2007. Crucial to this paper, there are 16 countries which are observed in both

TIMSS 2003 and TIMSS 2007, namely Armenia, Australia, Cyprus, Hong Kong, Hungary,

Iran, Italy, Japan, Norway, Russi, Singapore, Slovenia, Tunisia and the USA. This will

enable us to compare how these 16 country-based cohorts have evolved over the 4 grade

years that separates them.
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Country Mean Math Score Mean Parental Education Mean number of books Obervations
Algeria 387 NA 31 5339

Armenia 499 NA 88 4581
Australia 496 NA 110 3995
Bahrain 398 NA 71 4194
Bulgaria 464 NA 97 3966
Bosnia 456 NA 36 4191

Botswana 364 NA 38 4136
Columbia 380 NA 34 4863
Cyprus 465 NA 83 4377

Czech Republic 504 NA 89 4834
Dubai 461 NA 73 2744
Egypt 391 NA 40 6438

El Salvador 340 NA 32 4044
England 513 NA 92 3964
Georgia 410 NA 92 4112
Ghana 309 NA 38 5176

Hong Kong 572 NA 60 3449
Hungary 517 NA 117 4103
Indonesia 397 NA 28 4119

Iran 403 NA 39 3959
Israel 463 NA 103 3216
Italy 480 NA 101 4408

Japan 570 NA 88 4278
Jordan 427 NA 60 5161

Malaysia 474 NA 51 4452
Malta 488 NA 994 4650

Morocco 380 NA 48 2896
Mongolia 432 NA 28 4237
Norway 469 NA 114 4561
Oman 372 NA 62 4654

Palestine 367 NA 48 4292
Qatar 307 NA 82 7082

Romania 461 NA 61 4177
Russia 512 NA 95 4461

Saudi Arabia 329 NA 54 4118
Singapore 593 NA 80 4589
Slovenia 501 NA 78 4019

South Korea 597 NA 122 4236
Sweden 491 NA 117 5065
Syria 395 NA 44 4562

Scotland 487 NA 78 4022
Thailand 441 NA 35 5397
Tunisia 420 NA 36 3971
Turkey 432 NA 47 4469
Ukraine 462 NA 80 4412

USA 508 NA 91 7261

Table 2: TIMSS 2007 - 8th Graders
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5.1.3 PISA 2009

In 2000 the OECD mandated the first competing version of a large scale assessment

survey on education, which would come to be named PISA. It looked to assess the Math,

Science and Reading abilities of children aged 15 across 32 countries - including 28 OECD

coutries and 4 non-OECD countries. Contrary to TIMSS, its primary focus was to develop

an international large scale assessment survey which would not be curriculum-based, and

which would instead measure the abilities of children to utilize their Maths, Science and

Reading abilities in real-life situations.

Since the first survey in 2000, PISA has been releasing new waves every 3 years (2003,

2006, 2009, 2012 and 2015). The latter waves have been including greater numbers of

countries and increasing the amount of detailed information on the pupils (immigration

status, language spoken at home, material possessions at home,...). This - as with the

TIMSS databases - will prove helpful to single out the effects of the education system, by

controling for the factors out of the education system’s responsability. PISA also provides

increasingly detailed information on the parental background of the pupils (Parental Ed-

ucation, Parental Social Status, and number of books at home, ...), which is crucial to

construct our inequality of opportunity criteria.

The PISA 2009 database - on which will rely our empirical application - surveys

515.958 pupils aged 15 accross 73 countries. Crucial to this paper, one can see that there

are 15 countries which are surveyed in both TIMSS 2003 and PISA 2009: Australia, Hong

Kong, Hungary, Italy, Japan, Latvia, Lithuania, Netherlands, New Zealand, Norway,

Russia, Singapore, Slovenia, Tunisia and the United States. 24 countries out of the 73

countries in PISA 2009, are also observed in TIMSS 2007: Australia, Bulgaria, Colombia,

Czech Republic, Georgia, Hong Konk, Hungary, Indonesia, Israel, Italy, Japan, Jordan,

Malaysia, Norway, Qatar, Romania, Russia, Singapore, Slovenia, South Korea, Sweden,

tunisia, Turkey and Sweden. This implies that we will be able to study how equality of

opportunity evolves along the grade years of the different education systems.
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Country Mean Math Score Mean Parental Education Mean number of books Obervations
Albania 377 12 52 4596

Azerbaijan 431 13,6 63 4691
Argentina 388 11,9 74 4774
Australia 514 12,8 178 14251
Austria 496 13,1 149 6590
Belgium 515 13,5 137 8501
Brazil 386 10,1 41 20127

Bulgaria 428 13,5 124 4507
Canada 527 14,5 163 23207
Chile 421 12,1 74 5669

Shanghai-China 600 12,6 116 5115
Chinese Taipei 543 12,6 138 5831

Colombia 381 10,7 45 7921
Costa Rica 409 11,2 47 4578

Croatia 460 13,4 84 4994
Czech Republic 493 13,2 145 6064

Denmark 503 13,8 139 5924
Estonia 512 13,9 173 4727
Finland 541 14,7 164 5810
France 497 12,2 135 4298
Georgia 379 13,4 160 4646

Germany 513 12,4 162 4979
Greece 466 13,5 135 4969

Hong Kong-China 555 10,7 93 4837
Hungary 490 12,7 191 4605
Iceland 507 15,5 191 3646
India 349 9,2 39 4826

Indonesia 371 9,8 56 5136
Ireland 487 12,8 144 3937
Israel 447 12,7 154 5761
Italy 483 12,7 139 30905

Japan 529 13,6 153 6088
Kazakhstan 405 14,1 94 5412

Jordan 387 12,7 69 6486
Korea 546 13,6 184 4989

Kyrgyzstan 331 13,1 57 4986

Table 3: PISA 2009 - Pupils aged 15 (1/2)
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Country Mean Math Score Mean Parental Education Mean number of books Obervations
Latvia 482 13,5 146 4502

Liechtenstein 536 13,1 173 329
Lithuania 477 13,3 115 4528

Luxembourg 489 13,3 194 4622
Macao-China 525 10,2 64 5952

Malaysia 404 13 80 4999
Malta 463 11,7 171 3453

Mauritius 420 12,2 93 4654
Mexico 419 10,7 50 38250

Republic of Moldova 397 13,5 66 5194
Montenegro 403 12,7 119 4825
Netherlands 526 13,5 136 4760
New Zealand 519 11,9 165 4643

Norway 498 13,6 183 4660
Panama 360 10,8 53 3969

Peru 365 11,3 50 5985
Poland 495 11,9 128 4917

Portugal 487 10,7 113 6298
Qatar 368 13,9 133 9078

Romania 427 13,1 103 4776
Russia 468 13,2 143 5308
Serbia 442 13,2 90 5523

Singapore 562 10,9 124 5283
Slovak Republic 497 13,2 118 4555

Slovenia 501 12,8 120 6155
Spain 483 11,9 162 25887

Sweden 494 13,2 192 4567
Switzerland 534 13,6 144 11812

Thailand 419 9,6 66 6225
Trinidad and Tobago 414 11,9 145 4778
United Arab Emirates 421 13,2 107 10867

Tunisia 371 10,5 41 4955
Turkey 445 8,6 81 4996

United Kingdom 492 13 144 12179
United States 487 13,4 123 5233

Uruguay 427 10,9 76 5957
Miranda-Venezuela 397 11,8 98 2901

Table 4: PISA 2009 - Pupils aged 15 (2/2)
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5.2 Creating a birth Cohort

In order to assess how education systems widen inequality of opportunity along grade

years, one must evaluate inequality of opportunity at different points in the education

system. Fortunately, PISA and TIMSS measure children’s skills at 3 different points in

the education system, albeit using different methodologies. In this subsection, we will

first explain why TIMSS and PISA skills are sufficiently comparable for the analysis of

Inequality of opportunity. Then we will explain why we chose the particular waves of

PISA 2009, TIMSS 2007 and TIMSS 2003. And lastly, we will justify why we chose to

construct an age-based cohort rather than a grade-based cohort.

One might argue that TIMSS and PISA measure different sets of skills which are

not comparable to one another: the former measuring curriculum-based skills, the latter

the ability for pupils to use their Maths in real-life situations. However, as shown in

Rindermann (2007), the results obtained by countries at PISA tests are strongly correlated

with their results at grade 8 TIMSS tests. At the country level, the results obtained in

PISA 2003 and TIMSS 2003 for 8th graders for instance, have a correlation of 0.88. In any

case, should there be any scepticism as regards the comparability of TIMSS and PISA

results, this would concern one’s ability to comment on the evolution of scores between

TIMSS and PISA. However, in this paper we will not study how scores evolve, but rather

how the parental background of the children affects their scores throughout the education

system. This implies that we will only be concerned with the stickiness between parental

background and children’s abilities, as opposed to the children’s achievement per se.

Having put to rest the possible qualms relating to the comparability of PISA and

TIMSS results, there still remains the issue of selecting the appropriate waves of PISA

and TIMMS in order to build a cohort. Since TIMSS grade 8 and grade 4 are separated

by a 4-year grade gap, if one chooses to rely on a TIMSS survey in year n for the fourth

graders, then in order to assess the same cohort at a different point in time, one must

additionally use the TIMSS wave of year n+ 4 for the eighth graders. Luckily, as TIMSS

surveys are released every 4 years, this simply implies taking one wave for the fourth

graders, and the next wave for the eighth graders.
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To compare the same cohort further along the education system, one can rely on

PISA data. However, the children assessed in PISA being on average 2 years older than

in TIMSS grade 8, one must use a wave which is two-year remote from the TIMSS survey.

Unfortunately, PISA releasing one survey every 3 years and TIMSS every 4 years, a two

year gap between the two only occurs every 12 years (2009, 2021, . . . ). This means that

– until PISA 2021 is released – the only possibility for constructing a cohort observed at

3 points along the education system using TIMSS and PISA data, is with PISA 2009,

TIMSS 2007 and TIMSS 2003.

Furthermore, in order to be able to merge the 3 survey-waves into a cohort database,

it is necessary that some countries participate in at least in 2 of the 3 surveys. Indeed,

any country which is exclusive to either PISA 2009, TIMSS 2007 or TIMSS 2003 will be

useless for a cohort analysis. Out of all the countries which are surveyed in either of the 3

surveys, table 5 shows that there are 34 countries that are surveyed at least twice - 11 of

which appear in all 3 surveys. This implies that whereas 23 countries will be compared at

2 points in the education system, Australia, Hong Kong, Hungary, Italy, Japan, Norway,

Russia, Singapore, Slovenia , Tunisia and the USA will be assessed in 2003, 2007 and 2009

for a given cohort.

Lastly, the basis on which to construct the cohort is possibly less straightforward than

it first seems. Whereas TIMSS assesses children at specific grade years (i.e. 4 and 8),

PISA focuses on the specific age group of pupils aged 15 years old. Both surveys also

provide the grade year and age of each pupil. Thus, one of the first issues in order to

create a cohort (which we will observe at different points along the education system), is

on which basis to construct the cohort.

Considering the information provided by these databases, one could chose to construct

either an age-based cohort or a grade-based cohort. The first would require keeping only

the children born in 1992/1993 - thus excluding all children who were in grade 4 in 2003

or in grade 8 in 2007, but who were not born in 1992/1993 - and the second would require

keeping only the children who were in grade 4 in 2003, in grade 8 in 2007 and in grade 10

in 2009 - thereby excluding all pupils in the PISA 2009 database who are not in grade 10.
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Due to children getting held back one or several years - and in some cases children

skipping years - along the education system, one finds that the share of children who are

not in the expected grade year at age 15 is quite sizeable. Thus excluding the children

born in the right year, but at the wrong grade year in PISA 2009, would significantly bias

our results. Conversely, upon reaching grade 4 and grade 8, since there are fewer children

having gotten held back, there fewer children whose age and grade year do not match.

Thus, we have chosen to exclude the pupils in grade 4 and grade 8 who were not born in

1992/1993 from the TIMSS database. We have therefore constructed what is effectively

an age-based cohort rather than a grade-based cohort.

6 Conclusions direction of future research

To do list:

• Proof of main theorem.

• verify IOP indices and their possible use in empirical analysis.

• If we feel the need of introducing the restriction uj is increasing and concave, then I

guess we should look at generalized zonotopes that are consistent with 1st and 2nd

order stochastic dominance. I think we can work on the simplex to derive the set of

admissible extensions based on the relevant notion of dominance.

• If we value concavity, we should also be willing to attribute an intrinsic meaning

to the outcome classes. In the example of skills, outcomes are skills intervals (for

instance, delimited by population quantiles?) and the outcome function (the uj in

out case) can be earning associated to these classes. For instance, one can associate

to the x decile of skills the average earnings of people in that decile of skills.

• We should discuss relations with existing literature. Most of EOP literature focuses

on opportunities for earnings acquisition. As above, we can use uj to measure

outcomes in a given class.
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Country TIMSS 2003 - Grade 4 TIMSS 2007 - Grade 8 PISA 2009
Armenia 3 3 7

Australia 3 3 3

Bulgaria 7 3 3

Cyprus 3 3 7

Colombia 7 3 3

Czech Republic 7 3 3

Georgia 7 3 3

Hong Kong 3 3 3

Hungary 3 3 3

Indonesia 7 3 3

Iran 3 3 7

Israel 7 3 3

Italy 3 3 3

Japan 3 3 3

Jordan 7 3 3

Korea 7 3 3

Latvia 3 7 3

Lithuania 3 7 3

Malaysia 7 3 3

Malta 7 3 3

Moldova 3 7 3

Netherlands 3 7 3

New Zealand 3 7 3

Norway 3 3 3

Qatar 7 3 3

Romania 7 3 3

Russia 3 3 3

Singapore 3 3 3

Slovenia 3 3 3

Sweden 7 3 3

Thailand 7 3 3

Tunisia 3 3 3

Turkey 7 3 3

USA 3 3 3

Table 5: Country presence in the 3 surveys
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– When φ is linear and u1 = −1 while uj = 0 if j 6= 1, then welfare is the

sample average of the intensity of occurrence of the minimum outcome in any

given distribution. This principle is very much in line with the ”mean of mins”

principle by Roemer.

– When φ is extremely concave, reflecting a max-min welfare evaluation, the

sum of evaluations φ across individuals can be formalized with the function

mini{
∑

j ujpij}. If uj = µj, the average earnings attached to the skills class j,

then
∑

j ujpij =
∑

j µjpij = µi, the average earnings of the type individual i

belongs to. Hence, social welfare give prevalence to the average earnings of the

more disadvantaged type, consistently with a ”min of mean” criterion a la Van

de gaer.

– Other criteria can be constructed accordingly.

• Statistical treatment of zonotope inclusions. Ideally, one would like to estimate

zonotopes for the population distribution using information about the sample dis-

tribution.

• GLZ is developed building on a parallel with the generalized Lorenz curve. Can we

develop further on this?

• GLZ inclusion can be a very demanding criterion. Indeed, welfare dominance for all

φ increasing concave and any u increasing is a very strong requirement. It might

make sense to use only specific functions φ, such as φ = µ(1 − I) where µ is the

average evaluation of each type opportunity profile and I the implied inequality.

Alternatively, we can check dominance only when uj = µj, the average earnings in

skills class j. Can we derive meaningful restriction of the class of welfare functions

in the main theorem by looking at projections or integral (volumes) of the GLZ?
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A Proofs

A.1 Proof of Theorem 10

Proof. We prove that 1)⇒ 2)⇒ 3)⇒ 1).

1) ⇒ 2). Linearity of the welfare function implies that transformations T1, T2 and

T3 do not change welfare. Concavity of φ implies that any T4 transformation cannot

increase welfare.

2)⇒ 3). Consider vectors p = (p1, . . . , pn(p)) and p′ = (p′1, . . . , p
′
n(p′)) and a third vec-

tor p∗ of size n ≥ n(p′), n(p) with p∗ = (p∗1, . . . , p
∗
n) such that p∗i ∈ [0, 1] and

∑
i p
∗
i = 1.

Let the vector p∗ constructed in such a way that its elements can be related to the elements

of p and p′ as follows. Denote I = {h}nh=1 the set of natural numbers indicating elements

of p∗. For all i = 1, . . . , n(p) exists I(i) ⊆ I satisfying 1 ≤ |I(i)| ≤ n,
⋃n(p)
i=1 I(i) = I

and I(i) ∩ I(i′) = ∅ for any i 6= i′, such that pi =
∑

h∈I(i) p
∗
h and equivalently for

p′. Since every individual in type h ∈ I(i) faces the same distribution of opportunities

(pi1, . . . , pik), i.e. phj = pij ∀j for all h ∈ I(h), welfare in society p can be represented as∑n(p)
i=1

∑
h∈I(i) p

∗
hφ(
∑k

j=1 ujpij) =
∑n∗

i=1 p
∗
iφ
(∑k

j=1 ujp
′
ij

)
, and equivalently for p′. State-

ment 2) hence implies ∃p∗ such that
∑n∗)

i=1 p
∗
iφ
(∑k

j=1 ujpij

)
≥
∑n∗

i=1 p
∗
iφ
(∑k

j=1 ujpij

)
for

all φ increasing concave and for any u1, . . . , uk. Following ?, the condition is equivalent to

p′ Generalize Lorenz dominates p for any u1, . . . , uk. GL dominance should be verified at

any proportion q ∈ [0, 1] of the population distribution. Let θi(q) ∈ [0, 1], i = 1, . . . , n be

such that
∑n

i=1 θi(q)p
∗
i = q. For a given choice of u1, . . . , uk, we define lorenz dominance

as follows (?):

min
θ′1(q),...,θ′n(q)

n∑
i=1

θ′i(q)p
∗
i

k∑
j=1

ujp
′
ij ≥ min

θ1(q),...,θn(q)

n∑
i=1

θi(q)p
∗
i

k∑
j=1

ujpij, p ∈ [0, 1]. (4)

We show that this condition induce zonotopes inclusion. Statement 2) in the theorem

implies that for any vector u = (u1, . . . , uk) ∈ Rk and for any q ∈ [0, 1] there exist

θi(q), θ
′
i(q) ∈ [0, 1], i = 1, . . . , n satisfying

∑n
i=1 θi(q)p

∗
i =

∑n
i=1 θ

′
i(q)p

∗
i = q such that (4)
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can be equivalently stated as:

u · (
n∑
i=1

θ′i(q)p
∗
i p
′
i1, . . . ,

n∑
i=1

θ′i(q)p
∗
i p
′
ik)

t ≥ u · (
n∑
i=1

θi(q)p
∗
i pi1, . . . ,

n∑
i=1

θi(q)p
∗
i pik)

t, p ∈ [0, 1],

where t stands for transpose. The inequality can be equivalently formulated as:

(u, 1) · (
n∑
i=1

θ′i(q)p
∗
i p
′
i1, . . . ,

n∑
i=1

θ′i(q)p
∗
i p
′
ik,

n∑
i=1

θ′i(q)p
∗
i )
t ≥ (5)

(u, 1) · (
n∑
i=1

θi(q)p
∗
i pi1, . . . ,

n∑
i=1

θi(q)p
∗
i pik,

n∑
i=1

θi(q)p
∗
i )
t, p ∈ [0, 1], (6)

More generally, there is an infinity of vectors v′q = (
∑n

i=1 θ
′
i(q)p

∗
i p
′
i1, . . . ,

∑n
i=1 θ

′
i(q)p

∗
i p
′
ik,
∑n

i=1 θ
′
i(q)p

∗
i )

and vq = (
∑n

i=1 θi(q)p
∗
i pi1, . . . ,

∑n
i=1 θi(q)p

∗
i pik,

∑n
i=1 θi(q)p

∗
i ) corresponding to sequences

of coefficients θi(q), θ
′
i(q) ∈ [0, 1], i = 1, . . . , n satisfying

∑n
i=1 θi(q)p

∗
i =

∑n
i=1 θ

′
i(q)p

∗
i = q.

Let denote these vectors by sets Vq and V ′q for situations p and p′ respectively. Building

on the fact that a column vector v ∈ Rk belongs to the convex hull of a of a set of vectors

v1, . . . , vn if and only if u · v ≥ min1≤i≤n u · vi for any row vector u ∈ Rk, we conclude that

condition (6) is satisfied if and only if

V ′q ⊆ convVq, q ∈ [0, 1]. (7)

For a given q, the set Vq identifies the intersection of an hyperplane in Rk+1 with slopes

(0, 1, . . . , 1) and the zonotope Z ((p, p̃)) associated to the situation p (and similarly for

p′). Hence (7) is equivalent to

Z
(

(p′, p̃′)
)
⊆ Z ((p, p̃)) . (8)

The inclusion implies that for any z′ ∈ Z
(

(p′, p̃′)
)

there exists θ1, . . . , θn with
∑n

i=1 θi = 1

such that z′ =
∑n

i=1 θi(p
∗
i , p̃i1, . . . , p̃ik), which implies

z′ · diag((1, p))−1 =
n∑
i=1

θi(p
∗
i , p̃i1, . . . , p̃ik) · diag((1, p))−1.
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Hence (8) is equivalent to Z
(

(p∗, p̃′∗ · diag(p)−1)
)
⊆ Z

(
(p∗, p̃∗ · diag(p)−1)

)
. The fact

that Z
(

(p∗, p̃′∗ · diag(p)−1)
)

= Z ((p, p̃ · diag(p)−1)) (and similarly for p′) implies state-

ment 3).

3)⇒ 1). Condition 3) implies that Z(p̃′ ·diag(p′)−1) ⊆ Z(p̃·diag(p)−1). We can follow

Andreoli Zoli to show that Zonotope inclusion implies the existence of a finite sequence

of transformations T1-T4.

A.2 Proof of Corollary 11

Proof. We prove that 1)⇒ 2)⇒ 3)⇒ 1)..

1) ⇒ 2). Linearity of the welfare function implies that transformations T1 and T2

do not modify welfare. Any operation T6 modifies the initial distribution of individual ex-

pected utilities
∑

j ujpij for every i = 1, . . . , N(p) into
∑

j ujp
′
ij =

∑
j uj((1− α)pij + αpi′j) =∑

j ujpij + α
∑

j uj(pi′j − pij) and
∑

j ujp
′
i′j =

∑
j uj((1− α)pi′j + αpij) =

∑
j ujpi′j −

α
∑

j uj(pi′j − pij), while
∑

j ujp
′
hj =

∑
j ujphj for every h 6= i, i′. It holds that

∑
j ujp

′
ij ≥

(<)
∑

j ujpij and
∑

j ujp
′
i′j < (≥)

∑
j ujpi′j if and only if

∑
j uj(pi′j − pij) ≥ (<)0, imply-

ing a transfer of implicit well-being from the individual with larger
∑

j ujpij to that with

smaller level. Concavity of the function φ in statement 2) picks up this effects and register

higher welfare in p′ compared to p.

2)⇒ 3). Follows from Koshevoy 1995

3)⇒ 1). It can be demonstrated (lengthy, non diffuclt) from Theorem 1.

B GLZ inclusion: Cases with 3 and 4 outcomes

Consider now a case with k = 3 outcomes: a bad (j = 1), an average (j = 2) and a good

(j = 3) outcome. GLZ are now defined on the k + 1 = 4 dimensional space. Even in this

case, we can assess inclusion by studying the GLZ projections on the k = 3 space. The

GLZ of a distribution p can be constructed in this framework by first defining the set of

population distributions p′ = (p′1, p
′
2, p
′
) that first order stochastic dominate the reference

distribution p = (p1, p2, p3).
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Figure 5: Identification of the set of distributions that first order stochastic dominates p
on the k = 3 simplex.

To verify stochastic dominance, one has to check that p′1 − p1 ≤ 0 and that p′1 + p′2 −

(p1 + p2) ≤ 0. We identify the set of distributions satisfying these constraints on the

simplex represented in figure 5, reporting probability masses of groups 1, 2 and 3 at the

extremes. Panel a) of the figure reports one of such cases. In the figure, the green line

parallel to the simplex line segment connecting (0, 1, 0) and (0, 0, 1) displays the lower

bound of the set of all configurations where the constraint p′1 − p1 ≤ 0 is satisfied. On

a similar vein, the blue line parallel to (1, 0, 0) and (0, 1, 0) connecting classes 1 and 3

displays all vectors p′ such that p′1 + p′2 − (p1 + p2) ≤ 0. The intersection of the two sets,

represented in red, gathers all situations satisfying both conditions at once.

Elements in this set provide possible directions toward which the LZ can be extended,

representing all situations in which a clear improvement in opportunities occurs and distri-

butions are the ranked accordingly. Hence, the LZ extension follows any direction implied

by points lying on the set of dominant distributions on the simplex with respect to p. As

shown in panel b), the set of points in the set of distributions that first order stochastic

dominate p is spanned by two vectors with directions (−1,+1, 0) and (0,−1,+1). For

instance, the sum of the two vectors represented in blue on the figure, when properly
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scaled gives vector p′.

The directions implied by each of the two vectors (−1,+1, 0) and (0,−1,+1) is that

of a sequence of improvements. The improvement from outcme level j = 1 to j = 3,

for instance, is (−1, 0,+1) and can be simply obtained as (−1,+1, 0) + (0,−1,+1). This

offers an intuitive way of representing the Generalized Lorenz Zonotope of the matrix p

(with n(p) individuals and k = 3 outcomes) on the k + 1 = 4 dimensions:

GLZ(p) = Z((p, p̃)) + (R+ ×G3) ,

G3 = {z1(−1,+1, 0) + z2(0,−1,+1) : (z1, z2) ∈ R2
+}.

Similarly to the case of the GLZ with k = 2, even in this case the extension of the

GLZ obtain by extending each point of the zonotope Z((p, p̃)) in any possible direction

consistently with the limitation imposed by the set G3, which identifies all situations that

displays stochastic dominance in the respective population distributions.

Building on these arguments, we are able to identify the set supporting the GLZ even

when k = 4. In this case, increments imply moving mass from class j = 1 to j = 2, or

from j = 2 to j = 3 or from j = 3 to j = 4. Any of these transfers, or linear combination

of them, guarantee stochastic dominance. The Generalized Lorenz Zonotope hence writes:

GLZ(p) = Z((p, p̃)) + (R+ ×G4) ,

G4 = {z1(−1,+1, 0, 0) + z2(0,−1,+1, 0) + z3(0, 0,−1,+1) : (z1, z2, z3) ∈ R3
+}.

The case k = 4 is interesting because the simplex for distributions defined over four

outcomes can be represented by a tetrahedron with unitary edges. We use the figure to

motivate that the three vectors identifying the set G4 are indeed sufficient to identify any

population distribution p that first order stochastic dominate any given distribution p.

One such simplex is reported in panel a) of figure 6. We use 1, . . . , 4 to identify vertices,

representing lotteries that put the mass into one specific outcome. We consider the point

p, which falls within the simplex.

The first condition guaranteeing that p′ stochastic dominates p is that p′1 − p1 ≤ 0.
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Figure 6: Identification of the set of distributions that first order stochastic dominates p
on the k = 4 simplex.
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The set of distributions satisfying this condition is identified by the green hyperplane

containing p in the figure. Similarly, we identify conditions that guarantee p′1 + p′2− (p1 +

p2) ≤ 0 by the blue hyperplane in panel c) of the figure, and of p′1+p′2+p′3−(p1+p2+p3) ≤ 0

by the red hyperplane in panel b) of the same figure. The three conditions need to hold

simultaneously to guarantee stochastic dominance, hence the set of admissible population

distribution is identified by the intersection of the simplex subsets identified in panels a),

b) and c). The intersection generates the set of admissible directions that guarantee to

extend any point of the LZ towards stochastic dominance (panel d)). Even in this case,

the vectors with directions (−1,+1, 0, 0), (0,−1,+1, 0) and (0, 0,−1,+1), marked in red

in panel e), allow to identify any point belonging to G4 in the figure, when properly scaled.
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