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Abstract

The proportion of poor people living in neighborhoods where poverty is highly con-
centrated is widely accepted as a policy-relevant measure of urban poverty in large
metro areas. We challenge this view by developing new measures of urban poverty
that i) capture aspects of the incidence and distribution of poverty across neighbor-
hoods and ii) are consistent with the idea that poor people living in high-poverty
neighborhoods face a double welfare burden of poverty. We demonstrate that there
is only a measure that is consistent with a parsimonious axiomatic model for urban
poverty. Panel variations of this measure are additively decomposed into the contri-
bution of demographic, spatial and neighborhood-level poverty convergence effects.
We collect new evidence of heterogenous patterns and trends of urban poverty across
American metro areas over the last 35 years. Reduced form models allow to recover
the implications of (income) sorting, affordable housing and of rising gentrification
on different components of urban poverty across American cities.

Keywords: Concentrated poverty, axiomatic, decomposition, American metro areas,
gentrification.

JEL codes: C34, D31, H24, P25.

∗Corresponding author. Luxembourg Institute of Socio-Economic Research, LISER. MSH, 11 Porte
des Sciences, L-4366 Esch-sur-Alzette/Belval Campus, Luxembourg. E-mail: francesco.andreoli@liser.lu.
†DSE, University of Verona. Via Cantarane 24, 37129 Verona, Italy. E-mail: mauro.mussini@univr.it.

1



1 Introduction

Cities are the most unequal places in America (Moretti 2013, Baum-Snow and Pavan

2013, Andreoli and Peluso 2017) and, increasingly so, the places where opportunities

are created and redistributed. Variability in earnings inequality across cities is associ-

ated with heterogeneity in the economic mobility prospects of the children exposed to

these inequalities (Chetty, Hendren, Kline and Saez 2014, Chetty and Hendren 2016).

Inequalities and opportunities, however, are not equally distributed within the cities: in

large American metro areas one can observe both neighborhoods where the local income

distribution represents roughly the income distribution observed in the city, and more

segregated neighborhoods where residents are systematically exposed to the extremes of

the income distribution.

People living in poor neighborhoods face and indirect burden of local poverty via

neighborhood and peer effects on their labor market outcomes (Conley and Topa 2002)

and economic mobility prospects (Chetty et al. 2014). Even more so, poor people living

in these neighborhood face a double burden of poverty, being poor in places where poverty

is substantial. Evidence from the Moving to Opportunities experiment, offering vouchers

for housing to poor people living in high poverty neighborhoods, highlights that income

externalities generated from poverty concentration in the neighborhood are rather inter-

generational (Chetty, Hendren and Katz 2016), while most of the within-generation effects

pass though mechanisms affecting individual health and other life dimensions (Ludwig,

Duncan, Gennetian, Katz, Kessler, Kling and Sanbonmatsu 2013).

Many contributions have suggested using information on the presence of ghettos and

enclaves of poor individuals in the city to identify the extent at which poverty in the

neighborhood can affect residents’ outcomes. These are well captured by measures of

the degree of concentrated poverty in the neighborhood. Following the American Census

definition, concentrated poverty can be measured as the fraction of poor people in the
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city that live in neighborhoods where more than 40% of residents is poor. Implementing

this measure requires knowing an absolute poverty line (possibly household type- and

city-specific, provided by the Census) and counting individuals living in families with

income smaller than the reference poverty line. Information on poverty incidence are

then aggregated at the census tract level, a good approximation of neighborhood size.

Recent studies (Kneebone 2016) have highlighted persistence and trends of concentrated

poverty across largest American cities.

We argue here that traditional measures of concentrated poverty are not consistent

with very simple concepts illustrating what urban poverty is, implying that ranking cities

on the based on concentrated poverty, or studying its trends across time, or assessing

correlations with other dimensions, might be flawed. We introduce a simple axiomatic

model that generalize concentrated poverty measures toward what we call a urban poverty

index. We require this index to satisfy some relevant properties, adopted from the study

of inequality and poverty, as well as a basic principle: there is a double welfare burden of

poverty concentration, meaning that local residents exposed to more local poverty suffer,

ceteris paribus, a welfare drop. The largest and generalized the welfare drop, produce

by externalities associated with local concentration of poverty in the neighborhood, the

larger is urban poverty.

This simple setting allows us to characterize, along with technical properties a unique

measure of urban poverty. This takes the form of the Gini index of the distribution of

poverty shares across the city neighborhoods. The more unequally distributed are poverty

proportions across the city neighborhoods with respect to the citywide distribution, the

larger is urban poverty. For two cities displaying same poverty incidence (share of poor

people over the total), the city with dispersion of poverty shares across neighborhood

display larger urban poverty. This inequality captures a form of segregation of poor people

across the city neighborhoods: when urban poverty is high, then there are neighborhoods

displaying very high shares of local residents that are poor, and neighborhoods that are
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virtually poverty-free.

Our index, which is always consistent with the underlying axiomatic model, can be

additively decomposed along different dimensions, notably space and time. In this way, we

can assert whether urban poverty is mostly generated by neighborhoods that are spatially

related, unveiling local poverty traps and persistence, from the case where urban poverty

is idiosyncratic to the neighborhoods, i.e. the are very specific local characteristics of the

neighborhood that drive poverty concentration.

We use our measurement apparatus to assess the dynamic of poverty across all Amer-

ican metro areas over the last 35 years exploiting rich data from the Census and the

American Community Survey (AS). We use Census data for 1980, 1990 and 2000 to

measure poverty concentration across census tract of American Metropolitan Statistical

Areas (MSA) at census year. We also exploit the 5-years estimates from the American

Community survey waves 2006-2010, 2010-2014 and 2012-2016 to obtain estimates of con-

centrated poverty and census tract level for each American MSA for representative years

2008, 2012 and 2014, roughly corresponding to the onset, the striking and the early af-

termath of the Great Recession. Census and ACS data come in the form of tables: for

each census tract we gather information on proportion of households whose income falls

above a certain poverty threshold (which depends on household composition, we consider

different thresholds) as well as other characteristics of the residents and housing stock

in the census tract (including income distribution, and information about rents, housing

values and density). We use these data in three separate ways.

First, we elicit facts about urban poverty. We use the year-specific census tracts

partition to capture trends in urban poverty in each MSA spanning 1980, 1990, 2000,

2008, 2012, 2014. We find that XXX

Second, we exploit cross-walks files to construct a partition of the urban space into

census tracts that are stable in size across time (the US Census revises census tracts

definition to account for population chnages). We can construct a panel of census tracts
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and assess urban poverty across MSA. Given the panel structure, we can extrapolate

different components related to changes across time in the urban poverty index. We

study separately the trends and patterns of these changes across MSA. Results show that

XXX

Finally, we investigate the drivers of urban poverty and of its components. We use

reduced form regressions to assess the contribution of socio-economic composition, housing

market functioning, local public policies, supply of educational goods and aspects of the

urban income distribution affect urban poverty in American MSA. We place particular

emphasis on the role of gentrification, which is widely recognized as the major driver of

sorting patterns of poor population across neighborhoods in large metro areas. We identify

gentrifying neighborhoods in each city by looking at decennial changes in demographic

structure and housing market conditions in those neighborhoods.

TO BE CONCLUDED.

2 Measuring urban poverty

2.1 Setting

We assume from the outset that a city can be partitioned into n neighborhoods. For

instance, neighborhoods can coincide with an administrative division of the territory,

such as the census tracts partition of American cities provided by the Census Bureau. We

assume that the spatial organization of neighborhoods in a city is given, and we study

how poor people are distributed therein.

Let i ∈ {1, . . . , n} indicate a neighborhood. There are Ni individuals residing in

neighborhood i and N =
∑n

i=1 Ni individuals in the city. An individual is poor when

living in a household whose total disposable income is smaller than the federal monetary

poverty line provided by the American Census Bureau, calculated in a given year for
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that specific type of family. The poverty status of each individual is hence defined by

an exogenous poverty line, which adjusts across time but not across cities. The analysis

of urban poverty is hence conditional on the definition of poverty status. Let use Pi

to denote the number of individuals that are poor and live in neighborhood i, while

P =
∑n

i=1 Pi denotes the total number of poor in the city. For a given city, the urban

poverty configuration (denoted, for instance, A, B,. . . ) consists in a collection of counts

of poor and non-poor residents across the city neighborhoods, i.e. A = {PAi , NAi }ni=1.

In what follows, the superscript always indicates a urban poverty configuration, and we

explicitly use it only when disambiguation is needed.

The ratio Pi

Ni
indicates the share of the population of a given city that is poor and that

lives in neighborhood i. The proportion P
N

measures instead the incidence of poverty in

the city and is an average of the share of poverty measured in each neighborhood of the

city ( P
N

=
∑n

i=1
Ni

N
Pi

Ni
). The number P

N
defines an interesting cutoff point, discriminating

between neighborhoods where the poor are over-represented, and neighborhoods where

the poor are under-represented compared to the relative incidence of poverty in the city.

In a slightly more general setting, we use ζ ∈ [0, 1] as a urban poverty line, i.e. a cutoff

point identifying those neighborhoods where poverty is over-concentrated. If Pi

Ni
≥ ζ, then

i is addressed to as a high concentrated poverty neighborhood, since the proportion of

residents in that neighborhood that are also poor is larger than the threshold ζ. The

latter defines a normative judgement about tolerance to poverty concentration.1

For given urban poverty line ζ, neighborhoods can be ranked according to the incidence

of poverty therein:

P1

N1

≥ P2

N2

≥ . . . ≥ Pz
Nz

≥ ζ ≥ . . .
Pn
Nn

.

1The case ζ ≈ 0 reflects very low tolerance towards concentration of poverty, implying that even the
existence of poverty is detrimental in the perspective of the evaluator, let aside the disproportional burden
of poverty generated in those neighborhoods where poverty is slightly concentrated. Conversely, the case
ζ ≈ 1 expresses hight tolerance to poverty, since a neighborhood is targeted as poor if and only if all his
residents are poor.
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For simplicity, the labels 1, 2, . . . , n are assumed to coincide with the rank of the neigh-

borhoods, ordered by decreasing magnitude of concentrated poverty. Among all neighbor-

hoods in the metro area, we identify with z the neighborhood where poverty concentration

coincides (or is approximately as large as) the urban poverty line. This neighborhood z

will serve as a benchmark, so that poor are over-represented in neighborhood i if and only

if i ≤ z.

2.2 A relative urban poverty line

The cutoff poverty line ζ defines an absolute concept of poverty, i.e., neighborhoods are

target as poor if the proportion of poor resident is larger than a pre-selected threshold

ζ. Adopting an absolute urban poverty threshold implies that configurations displaying

different poverty incidence should be evaluated with respect to the same threshold ζ.

Poverty literature (Cowell 2000, Marx, Nolan and Olivera 2015) strongly advocates for

relative concepts of poverty lines. We endorse this view in the analysis of urban poverty.

The urban poverty cutoff ζ is assumed to be proportional to the citywide average poverty,

P
N

, by a positive real coefficient α, so that

ζ = α
P

N
. (1)

Urban poverty hence depends on the citywide incidence of poverty, as measured by P
N

,

that defines a benchmark at the city level and that might differ across cities. The coef-

ficient α expresses a normative view about sensitivity of urban poverty to the incidence

of poverty in the city. Larger values of α imply that urban poverty evaluations should

focus on neighborhoods that display extreme poverty, hence magnifying the roles of urban

ghettos and enclaves. For instance, poverty incidence among the poorest American cities

is approximatively 20%. By setting α = 2, one would pick up urban poverty originating

from those neighborhoods where more than 40% of the residents are poor. Conversely,
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Figure 1: Urban poverty curve and concentrated poverty
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Note: CP index values (vertical black solid lines) for two configurations A and B.

small values of α put the emphasis also on the distribution of poverty across the neighbor-

hoods. Comparisons of urban poverty across cities are conditional on the relative poverty

threshold α, which is kept constant across cities.

2.3 Concentrated poverty and its critical aspects

Given the incidence of poverty in the city, P
N

, there are neighborhoods displaying larger

incidence of poverty ( Pi

Ni
> P

N
) and neighborhoods displaying smaller incidence of poverty

than the city as a whole. Urban poverty assessments focus on extent and distribution of

poverty in those neighborhoods where poverty incidence is larger.2

A convenient way to represent the distribution of the poor population in the city

is to plot the cumulative proportion of poor people against the proportion of the over-

all population living in the neighborhoods displaying higher incidence of poverty. These

neighborhoods are ordered according to the ratio Pi

Ni
and cumulative proportions are calcu-

lated based on this order. The cumulative proportion of poor people in neighborhood j is

2Concentrated poverty evaluations are not directly concerned in comparisons of poverty (i.e., PA >

PB) or poverty incidence (i.e., PA

NA > PB

NB ) across cities.
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given by
∑j

i=1
Pi

P
and the cumulative proportion of residents therein is

∑j
i=1

Ni

N
. Consider

plotting the points with coordinates
(∑j

i=1
Ni

N
,
∑j

i=1
Pi

P

)
with j = 1, . . . , n on a graph.

The curve starting from the origin and interpolating these points is the urban poverty

curve. The urban poverty curve of an hypothetical configuration A is reported in panel

(a) of Figure 1. For simplicity, we assume that the city has many neighborhoods that dif-

fer in terms of poverty shares, so that the urban poverty curve appears smooth. Its graph

is concave and always lies above the unit square diagonal, implying that in configuration

A there are neighborhoods with Pi

Ni
< P

N
and other neighborhoods with Pi

Ni
> P

N
.3 We will

use this curve extensively throughout the paper.

We can relate this curve to the measurement of urban poverty in a city. Literature

has focused on a particular aspect of urban poverty, denoted concentrated poverty, which

is measured by the incidence of poverty in those neighborhoods of the city where poverty

is more concentrated vis-à-vis a urban poverty line ζ. According to the American census,

concentrated poverty corresponds to the proportion of poor residents that live in cen-

sus tracts where at least 40% of inhabitants fall below the poverty line (i.e., ζ = 0.4).

A convenient measure of concentrated poverty is CP :=
∑z

i=1
Pi

P
, where Pz

Nz
≈ ζ. The

concentrated poverty measure CP was first proposed by Wilson (1987) to pick up spa-

tial trends in urban poverty and thus highlight distressed census tracts characterized by

extreme poverty. ?, ? and ? have documented the dynamics of concentrated poverty

(using CP index) in larger American cities, warning about the re-concentration patters

registered in the last decades.

The index CP is related to the urban poverty curve of a given city: it is, in fact,

the level of the curve corresponding to the proportion of the city population living in

neighborhoods with at least 40% of inhabitants falling below the federal poverty line, that

3This curve can be interpreted as the Lorenz curve of the distribution of poor population proportions
Pi

Ni
across the city neighborhoods, each weighted Ni

N . The curve of a configuration in which poor people
are evenly spread across neighborhoods of the city, that is Pi

Ni
= P

N for every neighborhood i, would
coincide with the unit square diagonal.
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is
∑z

i=1
Ni

N
. The index CP is calculated on the basis of an absolute urban poverty line.

A relative version of the index, denoted CP (A;α), can be also constructed. In this case,

the urban poverty line is α PA

NA
for a city with a configuration of urban poverty A, and it

changes across configurations depending on poverty incidence in the city. Consider now a

city where PA

NA
= 0.2 and α = 2, which gives ζ = 0.4 from (1) (implying that concentrated

poverty calculations based on an absolute or a relative urban poverty thresholds coincide).

The coefficient α identifies the slope of a line tangent to the urban poverty curve, as in

Figure 1. The tangency point identifies the neighborhood z displaying a proportion of

inhabitants falling below the federal poverty line that is approximatively α PA

NA
, the relative

urban poverty threshold.

The concentrated poverty index might miss important aspects of the distribution of

poverty across the city neighborhoods, implying that the ranking of the cities it produces

might not be consistent with the changes in the geography of poverty registered by non-

intersecting urban poverty curves. The example illustrated in panel b) of Figure 1 makes

a case. We consider two cities, denoted by configurations A and B where, for simplicity,

PB

NB
= PA

NA
. The distribution of poverty across the neighborhoods of city B is more uneven

than in city A, implying that the urban poverty curve of the former lies always above that

of the latter. It seems uncontroversial to conclude that urban poverty is larger in B than

it is in A: for any share of the city population living in neighborhoods where poverty is

more concentrated, the proportion of poor is always larger in B than in A. Nonetheless,

CP (B, α) < CP (A, α) as shown in the figure for α = 2.

The example above formalizes intuitions in ?, who suggest valuing the intensity and

the distribution of poverty in the city through the dissimilarity and the interaction indices,

eliciting the degree of segregation of poor people across the neighborhoods. These indices

are interesting, because they explicitly highlight that urban poverty is connected to the

uneven distribution of poverty in the urban space, but have no clear connections with the

welfare burden induced by concentrated poverty on the people exposed to it.
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An interesting alternative approach consists in valuing the unequal distribution of

poverty across the neighborhoods where poverty is more concentrated is the Gini coef-

ficient G(.;α) of the vector of poverty proportions P1

N1
, . . . , Pz

Nz
, where neighborhood z is

such that Pz

Nz
≈ α P

N
. For a given configuration, the index is defined as follows:

G(.;α) :=
1

2
∑z

i=1 Pi/
∑z

i=1Ni

z∑

i=1

z∑

j=1

NiNj

(
∑z

i=1Ni)
2

∣∣∣∣
Pi
Ni

− Pj
Nj

∣∣∣∣.

The index G(.;α) is related to the area comprised between the urban poverty curve and

the unit square diagonal, up to a proportion
∑z

i=1
Ni

N
of the overall population.

The index is yet based on limited information about poverty distribution in the city and

might rank configurations inconsistently with non-intersecting urban poverty curves. In

what follows, we provide an axiomatic model for urban poverty that explicitly incorporates

normative judgements about the welfare implications of concentrated poverty. We show

that the unique index of concentrated poverty consistent with the setting is the index

G(A) := G(A; 0), which is a measure of the area comprised between the urban poverty

curve and its reference diagonal.

2.4 Characterization of a family of urban poverty measures

A urban poverty index is a function UP : P → R+ (with P the set of urban configurations)

assigning to each configuration a number, interpreted as the level of urban poverty in that

configuration. We write UP (A;α) to explicitly mention that evaluations of urban poverty

are conditional on a relative urban poverty line. Every urban poverty measure should obey

a simple monotonicity principle: if the proportion of poor people living in neighborhoods

where poverty concentration is high increases, then the urban poverty measure UP should

not decrease.
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Axiom A1 (Monotonicity) Other things being equal, an increase of the proportion of

poor people in a neighborhood where poverty is concentrated (i ≤ z) cannot reduce urban

poverty.

The CP (.;α) index does not satisfy this basic axiom, as motivated in previous exam-

ples. A convenient way to incorporate the implications of this axiom on urban poverty

measurement is to focus on urban poverty indices that explicitly depend on the urban

poverty shortfall Pi/Ni

Pz/Nz
−1, with z being the neighborhood identified by the urban poverty

threshold α. The shortfall is positive in those neighborhoods where poverty is mostly

concentrated, and increases if the proportion of the poor Pi

Ni
grows in some of the neigh-

borhoods with i ≤ z. The next axiom emphasizes that urban poverty indices should be

written as normalized (weighted) averages of urban poverty shortfalls.

Axiom A2 (Urban Poverty) The urban poverty index for configuration A at relative

urban poverty threshold α is:

UP (A;α) := A(A, α)
z∑

i=1

Ni

N

(
Pi/Ni

Pz/Nz

− 1

)
wi(A, α), (2)

with A(A, α) a normalization factor and wi(A, α) are normative weights attached to the

neighborhoods (and distinct from the population weights Ni

N
).

Different urban poverty indicators obtain for specific choices of the normalization and

weighting parameters. Let consider the case in which A(A, α) = α and wi(A, α) = 1 for

every neighborhood i, implying that the measure expresses exclusively concerns for the

incidence of concentrated poverty, but not for the distribution of poor individuals across
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Figure 2: Urban poverty curve and corrected concentrated poverty
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Note: The corrected concentrated poverty index CP ∗ corresponds to the vertical vertical black solid
line segments marked in the figure. In panel (a), the index is computed for both configurations A (line
segment AB) and B (line segment CD) also reported in Figure 1 for α = 2. In panel (b), the urban
poverty curve of the hypothetical configuration B lies nowhere below and somewhere above the curve of
the hypothetical configuration A. The corresponding CP ∗ indices at different poverty thresholds α = 1
and α′ < α are also provided.

neighborhoods where poverty is more concentrated. Under these conditions we have that

UP (A;α) = α
z∑

i=1

Ni

N

(
Pi/Ni

Pz/Nz

− 1

)

= CP (A;α)− α
z∑

i=1

Ni

N
=: CP ∗(A;α).

The result, which follows from (1), shows that the index CP (.;α) can be made consistent

with Axioms A1 and A2 only if corrected by a term α
∑z

i=1
Ni

N
, measuring the expected

degree of concentrated poverty among the z neighborhoods, under the assumption that

the poor population is evenly spread out across the city neighborhoods. In panel (a) of

Figure 2 we show the same urban poverty curves as in Figure 1, and we denote with

bold solid lines the corrected concentrated poverty indices CP ∗(A, α) (segment AB) and

CP ∗(B, α) (segment CD).4 Consistently with the ordering of configurations induces by

4These indices visually correspond to the distance computed at abscissa Nz

N between the urban poverty
curve and the line with slope α intersecting the origin.

13



the urban poverty curves in the graphs, the corrected concentrated poverty index ranks

CP ∗(B;α) > CP ∗(A;α). Since every urban poverty curve is concave and lies above the

diagonal, the index CP ∗(.;α) is always positive and bounded above by CP (.;α).

The corrected concentration index CP ∗(.;α) might be regarded to as a natural ref-

erence measure for urban poverty assessments. It combines three aspects of poverty:

A normative view about the identification of concentrated poverty (α), which reflects a

policy target; the incidence of the burden of concentrated poverty across the population

(denoted by the index H, the proportion of individuals residing in high-poverty neigh-

borhoods); the intensity of poverty in the neighborhoods where poverty is concentrated

(denoted by I, the neighborhood poverty gap). The index can be hence decomposed as

follows:

CP ∗(A;α) = α

(
z∑

i=1

Ni

N

)
z∑

i=1

Ni/N∑z
i=1Ni/N

(
Pi/Ni

Pz/Nz

− 1

)

= α H I.

The index CP ∗(.;α) is consistent with the ranking of configurations induces by non-

intersecting urban poverty curves, but it is far from being an ideal measure of urban

poverty, for at least two reasons. First, the index measures the degree of concentration

of poverty by focusing on a particular coordinate of the urban poverty curve. Hence, the

the index might not distinguish between two situations even if they are unambiguously

ranked by the urban poverty curves. Panel (b) in Figure 2 reports one of these cases.5

The second critical aspect of CP ∗(.;α) is that the index does not value heterogeneity

in the concentration of poor individuals across the city’s neighborhoods. There are two

potential sources of heterogeneity. First, heterogeneity in Pi

Ni
ratios for any i ≤ z. When

these ratios are homogenous across neighborhoods where poverty is concentrated, i.e.,

5The curve of configuration B lies above that of A almost everywhere. For α = 1, CP ∗(B; 1) >
CP ∗(A; 1). For α′ small enough, however, CP ∗(B;α′) = CP ∗(A;α′) and the two configurations become
indistinguishable despite a larger fraction of the poor population of B is concentrated in poor neighbor-
hoods compared to A.
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Figure 3: Corrected concentrated poverty and neighborhood structure heterogeneity
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Note: Corrected concentrated poverty measures at poverty thresholds α = 1 are given by solid line
segments AB in both graphs.

P1

N1
= . . . = Pz

Nz
≤ α P

N
, the CP ∗(.;α) index is a sufficient statistic for urban poverty. If

they are not, the index CP ∗(.;α) might rank very dissimilar configurations as equivalent

in terms of urban poverty. The graph in panel (a), Figure 3, provides an example where

urban poverty is unambiguously larger in configuration B than in configuration A for

α = 1, but CP ∗(B; 1) = CP ∗(A; 1).6

Another source of heterogeneity is in the demographic size of the neighborhoods, Ni

N
.

Evaluations based on the CP ∗(.;α) index might not be robust to small changes in the

relative poverty threshold α, implying that heterogeneity in neighborhoods composition

drives urban poverty assessments. Panel (b) of Figure 3 reports a problematic case where

poverty is concentrated in two neighborhoods (z = 2) when α = 1, with P1

N1
≈ P2

N2
, but N1

is substantially smaller than N2.7

6In the case of configuration A, the poor are evenly distributed in neighborhoods where poverty is
concentrated (so that the urban poverty curve is piecewise linear). In configuration B, instead, there is
heterogeneity in the distribution of poverty across neighborhoods, implying dominance in urban poverty
curves.

7In this case, urban poverty of configuration A is CP ∗(A, 1), given by segment AB in the figure. If
the poverty threshold is sized down to P2/N2

P/N , urban poverty does not change. If the poverty threshold is
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We retain the corrected concentrated poverty as a proper benchmark for measuring

urban poverty only for those configurations where neighborhoods where poverty is concen-

trated have homogeneous size and poverty is evenly distributed therein. This is formalized

with a normalization axiom for the urban poverty index.

Axiom A3 (Normalization) For any configuration A where Pi

Ni
= P ∗

N∗
and Ni

N
= N∗

N
for

all neighborhoods i ≤ z and P ∗ and N∗ are constant, urban poverty can be normalized to

UP (A;α) = CP ∗(A;α) = αHI.

Our last axiom highlight the welfare consequences of urban poverty. There is increas-

ing empirical evidence that the place, and even the neighborhood, experienced during

youth and adulthood has strong implications for many social, economic and health out-

comes, and definitely for individual welfare. The degree of concentration of poverty in

the neighborhood is an important source of externalities that have potential negative im-

plications for welfare of the individuals that are exposed to it, implying a double welfare

burden of urban poverty. We assume that, other things being equal, the welfare of an

individual living in a neighborhood i and exposed to a high proportion of poor residents

is smaller than the welfare the same individual would achieve in any other neighborhood

j with a smaller fraction of residents in poverty. Let denote by W (., Pi

Ni
) the welfare of

this individual. It depends, among other things, on percentage of poor individuals in

his neighborhood. The next axiom conveys the idea that concentration of poverty in the

neighborhood produce negative externalities on individual welfare.8

Axiom A4 (Double burden of poverty on welfare) If Pi

Ni
≥ Pj

Nj
then W (., Pi

Ni
) ≤

further reduced to any level α′ just smaller than P2/N2
P/N , urban poverty jumps to the new level identified

by the line segment CD in the figure, which is definitely smaller than CP ∗(A, 1). Hence, the corrected
concentrated poverty index might display substantial discontinuities with respect to the poverty threshold
definition.

8The unequal distribution of concentrated poverty across the city neighborhoods implies, in particular,
an unequal exposure to the double burden of poverty for the poor individuals living therein: These people
already have low welfare because poor and, additionally, they are subject to the negative external effects
associated to living in a place where poverty is concentrated.
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W (.,
Pj

Nj
) for any admissible individual welfare function W .

A natural way to relate the measurement of urban poverty to Axiom A4, and to

introduce the idea that poor individuals living in places where poverty is concentrated

are exposed to a double welfare burden, is to assume that neighborhoods where poverty

is more concentrated also receive the largest weights in urban poverty assessments. There

are many weighting functions w(.;α) in (2) that are consistent with this view. We focus

on those weights that depend exclusively on positional information given by the ranking

that each individual occupies in the distribution of people across neighborhoods, ordered

by the degree of poverty concentration they are exposed to in their neighborhood.

Axiom A5 (Rank weights) The weight wi(., α) associated to neighborhood i is given

by the ranking in the distribution of welfare occupied by the individuals living in i.

Since individual welfare is assumed monotonic in the proportion of poor in the neigh-

borhood and that all individuals in the same neighborhood share the same proportion of

concentrated poor, their rank is constant within the neighborhood. In any neighborhood

i ≤ z there are Ni individuals, each weighted 1/N . They are all sharing the same position

in the welfare ranking. Consistently with axioms A4 and A5, we can hence express the

weight of neighborhood i as follows:

w(., α) =
z∑

j=1

Nj

N
−

i∑

j=1

Nj

N
+
Ni

N
(3)

There is only one urban poverty index that is consistent with axioms A1 and A2,

that converges to CP ∗(.;α) in specific cases and that accounts for heterogeneity in the

distribution of concentrated poverty in a way that is consistent with the implications

of concentrated poverty on individual welfare. The functional form characterized in the

next lemma shows that any urban poverty index must depend exclusively on the relative

poverty threshold and the data.

17



Lemma 1 For any configuration A with a large number of neighborhoods, the unique

urban poverty index that satisfies axioms A1-A5 is given by:

UP (α, α) =
αz

(z + 1)
H

[
I + (I + 1)G(A;α) − 1 +

2

H2

z∑

i=1

Ni

N

i−1∑

j=1

Nj

N

]
, (4)

where G(A;α) is related to the Gini index of the distribution of poor people proportions

across the neighborhood where poverty is concentrated.

Proof. See supplemental appendix.

The urban poverty index reflects the implication of three aspects of the distribution

of poverty across the city neighborhoods: the incidence, H, the intensity, I, and the

degree of inequality in the distribution of poor people in those neighborhoods that display

higher levels of concentrated poverty, G(.;α). Which aspect of urban poverty prevails

depends on the full distribution of poverty across the neighborhoods where poverty is

more concentrated.

The index UP (.;α) characterized in Lemma 1, however, has only an ordinal inter-

pretation since its scale depends on the chosen relative urban poverty threshold and on

the number and size of neighborhoods. Furthermore, the urban poverty index does not

evaluate the extent of the distribution of poor in neighborhoods where the incidence of

poverty is smaller than that implied by the urban poverty line.

Next, we propose axioms that overcome these limitations and we show that there is

only one index consistent with the representation of urban poverty given in Lemma 1 and

with these new axioms.

2.5 Main result: A unique urban poverty index

In empirical analysis of urban poverty it is desirable to use indices that have the form of

(4) and that satisfy a minimum degree of cardinal comparability across configurations that
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differ in the number of neighborhoods. Comparability is achieved by scaling the UP (.;α)

index characterized in Lemma 1 by a factor that depends upon the poverty threshold

definition and the data, so that neighborhood z can be identified.

Axiom A6 (Cardinality) Urban poverty evaluations should not be affected by the num-

ber of neighborhoods. The urban poverty index UP (.;α) should be hence scaled by the

factor z+1
zα

.

Another concern for empirical urban poverty analysis rests on the implications of

the size of the neighborhoods on poverty evaluations. We investigate the possibility of

reshaping the size and number of neighborhoods by a particular operation, denoted the

neighborhood splitting. An operation of neighborhood splitting applied to neighborhood

i implies splitting the neighborhood territory into two new neighborhoods i′ and i′′ of

smaller size, such that Pi

Ni
=

Pi′
Ni′

=
Pi′′
Ni′′

and Ni = Ni′ + Ni′′ . Any sequence of splits of

neighborhoods increases the number of neighborhoods while reshaping their size, without

affecting the distribution of poverty across these neighborhoods. We postulate that this

operation is a source of invariance for every urban poverty indicator.9

Axiom A7 (Invariance to neighborhood splitting) The UP (.;α) index is invariant

to any sequence of neighborhood splitting operations.

Lastly, we formalize the idea that urban poverty evaluations should be concerned with

the distribution of poor people across the whole city, rather than being focused on the

subset of neighborhoods of the city where poverty is more concentrated. By doing so, we

explicitly account for the fact that urban concentration of poverty gives rise to double

burden of poverty in those neighborhoods where the poor are over-represented, and a

double welfare benefit for the residents living in neighborhoods where the poor are under-

9This axiom is related to the replication invariance property often adopted in inequality analysis
(Atkinson 1970, Cowell 2000). It is also a basic property of segregation indices (Hutchens 1991, Frankel
and Volij 2011, Andreoli and Zoli 2014). Furthermore, the urban poverty curve is preserved by effect of
any sequence of neighborhood splitting operation
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represented compared to the citywide average. We take a normative stance on this by

requiring that z = n, a result which can be achieved by setting ζ = 0.

Axiom A8 (Focus on citywide urban poverty) α→ 0+.

Theorem 1 The urban poverty index U(.;α) satisfies Axioms A1-A8 if and only if it is

the Gini index G(.).

Proof. See supplemental appendix.

Theorem 1 brings forward four contributions to the measurement of concentrated

poverty. First, it shows that the simple, normatively appealing axiomatic model A1-A8

developed in the section characterizes exactly one measure of urban poverty, which does

not depend on a urban poverty line (i.e., UP (A, 0) := UP (A)), and which takes the

specific functional form of the Gini inequality coefficient of the distribution of poverty

shares across the city neighborhoods (i.e., UP (A) = G(A)).

Second, the theorem highlights that urban poverty arises when the proportion of poor

people in each neighborhood, Pi

Ni
, is dissimilar from proportion of poor people in the city,

P
N

. Coherently with the intuitions in ?, urban poverty ca be also interpreted as a form of

segregation of poverty across the neighborhoods of a city.

Third, urban poverty evaluations that account for the welfare burden generated by

exposure to concentrated poverty in the neighborhood should account for the distribution

of poverty throughout the city. As a consequence, urban poverty comparisons across cities

can be performed irrespectively of the choice of the underlying urban poverty line. Com-

parisons based on the UP (.) index are always consistent with the ranking of configurations

produced by non-intersecting urban poverty curves.

Fourth, the urban poverty index UP (.) can be conveniently decomposed to keep track

of changes in urban poverty that take into account the longitudinal dimension of the

data. This aspect is relevant for the American case, where poverty concentration within
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the same census tract can be followed through time and its contribution to urban poverty

at the level of the city can be then isolated. The next section investigates a decomposition

of UP (.) that is relevant for investigating trends of urban poverty in American cities.

3 Addressing changes in urban poverty

3.1 Decomposing changes in urban poverty

We focus now on changes in urban poverty between two period t and t′ > t within the same

metro area. We address more specifically the American case, and we use the partition in

census tracts provided by the Census Bureau to denote the city’s neighborhoods. Urban

poverty in an American city in period t is given by configuration A and in t′ by A′. We

are interested in the difference

∆UP = UP (A′)− UP (A) = G(A′)−G(A).

In the same city, census tracts are assumed to be held fixed across time.10 We hence

observe Pi and Ni in any neighborhood i both in time t and t′. We exploit the longitudinal

component of our data to decompose changes in poverty into three components.

The first component of changes in urban poverty captures the dynamic effect of changes

in the demographic weights of the census tracts on urban poverty, and is denoted denoted

W . In empirical applications, it is generally the case that
NAi
NA
6= NA

′
i

NA′
for at least a census

tract i. The change in the demographic weight of the census tract has non-trivial effects on

urban poverty changes. If the demographic weight increases in those tracts that are more

dissimilar in terms of poverty composition (i.e., there is a demographic expansion in tracts

with relatively few or relatively many poor residents), then the contribution to urban

poverty is positive (W > 0). Conversely, if the demographic growth is predominantly

10See crosswalk files XXXX.
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concentrated in those tracts displaying a more proportionate distribution of the poor in

relative terms (i.e., where Pi

Ni
≈ P

N
), then urban poverty decreases (W < 0). The element

W captures the interplay between growth in proportions of poverty and change in absolute

poverty (Pi). It allows to factor out the effect of population change from changes related

to the distribution of poverty across the city’s census tracts.

The second component of changes in urban poverty isolates changes in incidence of

poverty in the city and is denoted C. It is a function of the growth rate c of the incidence

of poverty in the city, defined as:

c :=

(
PA

′

NA′
− PA

NA

)
/
PA

NA
.

The element C measures the implication of a citywide increase in poverty incidence on

urban poverty. This component allows to separate the component related to proportional

growth in concentrated poverty across all neighborhoods (which coincides with the growth

rate of citywide poverty P/N , i.e.,
PA
′

i

NA
′

i

= (1 + c)
PAi
NAi

for every i) from the neighborhood-

specific growth rates of poverty (that are heterogeneously distributed across the city’s

neighborhoods). By factoring out C, we can isolate the component of urban poverty

change that is related to changes of poverty incidence in the city from other components

that are related to changes in the distribution of poverty across census tracts.

The last component we consider captures the implications of disproportionate changes

in tracts’ poverty rates on changes in urban poverty. If tracts poverty rates diverge, we

expect to observe larger panel growth rates of poverty in those census tracts where poverty

is already concentrated in period t. This leads to increasing urban poverty. Poverty rates

instead converge across census tracts if poverty rates grow faster in those tracts where

poverty were least concentrated in t. The implications of convergence of concentrated

poverty on changes in urban poverty are, nevertheless, ambiguous. If convergence is

limited, urban poverty may decrease. This always happens when poverty incidence in each
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neighborhood is closer to the poverty incidence in the city in t′ than it was in t. If, however,

converge is strong enough then census tracts where poverty was highly concentrated in t

become tracts with low poverty concentration in t′ and, viceversa, census tracts displaying

low concentrated poverty in t become tracts of high poverty concentration in t′. In this

case, we may end up attributing a reduction or lack of changes in urban poverty to a

re-ranking of the census tracts.

Borrowing the terminology from the literature studying the distributional effects of

longitudinal income growth (Jenkins and Van Kerm 2016), we propose to isolate two

components of convergence in poverty incidence across census tracts. The first component,

denoted R, captures the pure effect of re-ranking of census tracts and is relevant to isolate

situations where a given tract i changes position from t to t′ in the ranking of tracts, but

the overall distribution of concentrated poverty after the re-ranking remains the same. The

second component, denoted E, captures instead the extent of divergence/convergence in

concentrated poverty by comparing a census tract i in t with tract i′ in t′, such that i and

i′ occupy the same position in the tracts’ ranking.

3.2 Result and discussion

Our first result is that the changes in concentrated poverty can be linearly decomposed

into the four components illustrated above.11

Corollary 1 The change in urban poverty ∆UP from configuration A in time t to A′ in

time t′ for a urban poverty index satisfying axioms A1-A8 can be decomposed as follows:

∆UP = G(A′)−G(A) = W + R + C · E,
11The proof of the corollary exploits a representation of the urban poverty index G(.) that involves

comparisons of pairs of neighborhoods. Some of these pairs display a change in weight, in their relative
ranking (based on the intensity of concentrated poverty) and of poverty rates. These components are
then re-organized in a way that can be expressed as the decomposition in the corollary.
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where C = 1/ (1 + c).

Proof. See supplemental appendix.

The interesting elements of the decomposition are E and R. The term R + C · E

captures the degree of convergence or divergence once changes in population composition

have been factored our. The component E measures changes relative to the citywide

poverty incidence, it is positive in case of convergence, negative in case of divergence of

poverty rates across census tracts. The component R, instead, is always non-negative:

this term offsets the implications of strong forms of convergence (implying E < 0) that

simply boil down to reversal in the ranks of the census tracts where convergence occurs.12

The component R arises exclusively from census tracts that revert their ranking in the

distribution. The component E, instead, arises comparing census tracts that do not

change their relative position in the ranking, and by comparing concentrated poverty in

those tracts exhibiting a change in ranking in t′ with the level of concentrated poverty in

tracts occupying the same position in t.

The decomposition in Corollary 1 has advantages for comparing the dynamics of urban

poverty across cities when information on urban poverty is limited to the data defining

configurations in P .13 First, by factoring out the effect of demographic changes, W , on

urban poverty one can control for the differences in demographic growth across cities.

Second, the components R and C · E pick up specific aspects of changes in poverty

concentration that cannot be inferred from the knowledge of ∆UP alone. For instance,

consider two cities displaying no decennial changes in urban poverty, whereas R = C ·E =

0 for the first city, while R = −C · E > 0 for the second. While the poor population is

12Oversimplifying, a city with two census tracts where all poor people are concentrated in neighborhood
1 in t would display high levels of convergence in urban poverty, if all poor people migrate to neighborhood
2 in period t′. This change, however, can be described as a swap in the name of the tracts, that arguably
has no impact on the citywide level of urban poverty. In this case, the components C and R counterbalance
each others.

13The American Census Summary Tape Files, for instance, only report information on population
counts at different geographic scales and one can, at best, study the dynamics of these population counts
within census tracts.
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largely immobile in the first city, poverty concentration varies substantially in the second

city, despite the change does not imply a neat form of convergence in the concentration

of poverty, but rather a shift of poverty across the census tracts of the city. Another

interesting example could be that in which urban poverty grows in both cities. However,

in one city urban poverty might grow because the number of poor households grows more

rapidly in places that are historically poor, implying a divergence in poverty concentration

across the census tracts of the city. The component R would be small in this case. In

the other case, instead, the map of poverty might be substantially re-designed, with

traditionally poor neighborhoods experiencing substantial reductions in the share of poor

residents, and middle- and lower-class neighborhoods witnessing a growth in concentrated

poverty that is even more intense than the average. The component R and C · E would

be both large in this case.

The distinctions highlighted by the decomposition are relevant for empirical analysis

that aim at assessing and distinguishing the implications of different phenomena on urban

poverty. In the example above, for instance, the growth in urban poverty for the first city

might be well driven by changes in the income distribution (with the population getting

poorer), and increasing concentration can be likely explained by the sorting behavior of the

poor, who settle in more affordable tracts of the city where poverty is already concentrated.

We expect to observe this pattern in cities that have an history of gentrification, and where

sorting can be likely explained by local characteristics of the city, such as access to public

goods, amenities, transportation and access to the job market. Conversely, the features

of the change in urban poverty displayed by the second city are more coherent with the

premises of recent waves of gentrification: poor households in historically poor census

tracts are increasingly replaced by middle-class homeowners, and forced to move and

concentrate in marginal areas of the city, offering lower cost of living. In these cities,

empirical patterns of urban poverty can be best explained by gentrifying potential of the

historically poor census tracts.
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We use the decomposition described in Corollary 1 and the American Census and

American Community Survey data to further characterize changes in urban poverty in

American cities, and to describe more in depth the association with the Big Sort hypoth-

esis. Before doing so, in the next section we further decompose changes in urban poverty

that are clustered at the geographic level, from those that occur randomly throughout

the city. It is important to distinguish empirically these two cases to better understand

the implications of the drivers of urban poverty: while clustering of concentrated poverty

highlight that features of the place where tracts are located (along with access to jobs,

or belonging to the same school district) matters, changes in urban poverty driven by

spatially unrelated tracts imply that local characteristics of the housing market might be

predominant.

3.3 Spatial components of urban poverty

The decomposition illustrated in Corollary 1 does not take into account the urban geogra-

phy of the urban poverty changes. The measures ∆UP , W , R and E ignore information

about the location and proximity of the census tracts. Exploiting this information, we

can further separate elements of ∆UP , W , R and E that are related to a “neighborhood

component” and a “non-neighborhood component” of urban poverty concentration (Rey

and Smith 2013). The former component single out the sources of changes in concentrated

poverty that stem from census tracts that are geographically clustered. The latter com-

ponent, instead, focuses on the contribution to urban poverty of tracts that are arguably

spatially uncorrelated.

We obtain the spatial decomposition from a given proximity matrix N, its element

nij ∈ [0, 1] indicating the extent of proximity between census tracts i and j according to

some underling criterion. The matrix N can be constructed from the data and is assumed

fixed throughout the comparisons, but is specific to the metro area. Spatial dependence
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of concentrated poverty is accounted for by looking at the spatial proximity of the census

tracts. In this case, row i of N would indicate the probability that any tract j is contiguous

to tract i14

We now show that the linear decomposition advocated in Corollary 1 is preserved even

when changes in urban poverty and its components are further decomposed into changes

occurring among spatially close census tracts (denoted with a “N” subscript) and tracts

that are likely spatially unrelated (denoted with a “nN” subscript).

Corollary 2 The change in urban poverty ∆UP from configuration A in time t to A′ in

time t′ for a urban poverty index satisfying axioms A1-A8 can be decomposed as follows:

∆UP = G(A′)−G(A) = (GN(A′) +GN(A′))− (GnN(A) +GnN(A))

= (WN + WnN) + (RN + RnN) + C (EN + EnN) .

Proof. See supplemental appendix.

The decomposition offered by Corollary 2 are useful to trace out the spatial component

of urban poverty changes. First, the corollary shows that the urban poverty index G(.) is

linearly decomposed into urban poverty that is generated from census tracts that display

a neighboring structure. When GN is large relative to G, most of the heterogeneity in

urban poverty occurs in census tracts that are located nearby in space. Conversely, when

GN is small, neighboring census tracts display similar levels of concentrated poverty, thus

14One other alternative is to measure proximity with respect to reference points on the city map. In
this case, row i of matrix W could measure the extent of proximity of i to these points. These reference
points could be assigned exploiting exclusively geographical information. Interesting cases are those in
which proximity is expressed with respect to the neighborhoods making up the central business district,
recognized by the literature as the most likely place where concentrated poverty arise and stagnate in
American metro areas. Alternatively, the reference points could be identified on the basis of historical
trends of concentrated poverty, i.e. on those neighborhoods that historically have displayed high levels of
concentrated poverty. These different decompositions would allow to capture different aspects of spatial
proximity. In the latter case, for instance, one would be able to account for the attractive power of
historically distressed neighborhoods on actual and future concentrated poverty.
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providing evidence of spatial clustering of the poor.15

The clustering component of concentrated poverty is relevant for policy analysis for

at least two reasons. First, a large N component is evidence of a stronger double burden

on welfare of the poor that us due to concentrated poverty: not only a disproportionate

majority of poor people live in poor neighborhoods, but these neighborhoods are spatially

concentrated. Clustering might hence be symptoms of lack of access to transportation,

to the job market, to high-quality supply of public goods and definitely to economic and

social opportunities offered by cities. When poverty clustering overlaps with administra-

tive divisions of the territory, such as counties (most of the largest American metropolitan

areas include more than five counties) or school districts, more economically vulnerable

residents might face poverty traps that extend their effects both on long-term poverty

status of the residents as well as on intergenerational mobility prospects of the children

living therein. Political participation and voting decisions might be as well hampered by

the implications of living in strict contact with poor residents.

The second reason is technical: the decomposition is additive and its elements can be

separated within and across periods. Simply differentiating these terms allows to picture

the neighborhood and non-neighborhood dynamics of concentrated poverty. Studying the

N and nN components of the index G, as well as their evolution in time, provide summary

information about the extent at which poverty concentrate geographically in a city, and

whether the poverty clustering increases or decreases in time both in absolute as well as

in relative terms in a way consistent with the underlying axiomatic model A1-A8.

Corollary 2 further shows that the components W , R and C · E are also additively

decomposable into a neighborhood and a non-neighborhood component. This decompo-

sition is relevant, for instance, for separating implications of gentrification on clustering.

Consider the case in which urban poverty grows on aggregate in the city over the period

15The decomposition is close in spirit to a variance decomposition in a spatial context: clusters are
identified by their ability of to explain overall variance in the observed data.
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t to t′, although the component GN , small, does not vary. There is evidence of clustering

(some places are characterized by high poverty incidence, some others by low poverty

incidence), although the intensity of clustering does not change across time. This pattern

is consistent with two separate yet relevant cases. In one case, it may be that poverty

movements in t′ occur within the clusterings already existing in t, implying substantial

re-ranking of neighboring census tracts (since re-ranking is likely among clustered census

tracts display similar levels of concentrated poverty) while clusters remain substantially

unchanged: there is little spatial immobility of poverty across spatial clusters of poverty,

although there are changes in poverty within the cluster. We expect the component RN

to be large but close in level to C ·EN and RnN is relatively small, while residual changes

in urban poverty are driven by EnN . In a second case, instead, there might be substantial

changes in poverty clustering across the city, where some clusters disappear and some

other appear between period t and t′, making GN small in both periods. In this case,

poverty incidence changes across the city and, more importantly, across pre-existing clus-

ters. We expect the component RnN to be large in this case because re-ranking mainly

occurs across clusters, while RN can be small if clusters displaying hight/low poverty con-

centration in t tend to display low/high poverty concentration in t′ (implying that clusters

of high and low poverty likely reflect administrative partitions of the urban space), or it

can be large if clusters in t′ overlap clusters existing in t.

Other examples can be constructed to show that different elements of the decomposi-

tions in Corollaries 1 and 2 reflect different aspects of the spatial organization of urban

poverty and of the changes in poverty concentration along neighborhoods of the city. We

will analyze cross-cities differences in the geographic organization of urban poverty as well

as of its changes, making use of information on GN , GnN , RN , RnN , EN and GnN and

their associations.
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4 Patterns, trends and causes of urban poverty in

American cities: 1980-2015

4.1 Data

We assess spatial inequality based on information on incomes distributions within U.S.

cities over four decades, drawing on the census files of the U.S. Census Bureau for 1980,

1990 and 2000. Information about population counts, income levels and family compo-

sition at a very fine spatial grid is taken from the decennial census Summary Tape File

3A.16 Due to anonymization issues, the STF 3A data are given in the form of statistical

tables representative at the block group level, the finest available statistical partition of

the American territory. After 2000, the STF 3A files have been replaced with survey-based

estimates of the income tables from the American Community Survey (ACS), which runs

annually since 2001 on representative samples of the U.S. resident population. We focus

on the 2010-2014 5-years Estimates ACS module. Sampling rates in ACS vary indepen-

dently at the census block level according to 2010 census population counts, covering on

average 2% of the U.S. population over the 2010/14 period. To our knowledge, ACS

2010/14 wave has not yet been used for empirical analysis of urban inequality.

The units of analysis are households with one or more income recipients. The focus is

on the gross household income distribution. There are two available sources of information

that can be used to model the income distribution at the block group level. The first set

of tables display aggregate income at the block group level. The second set of tables show

instead counts of households per income interval at the block group level.17 There are 17

16The Census STF 3A provides cross-sectional data for all U.S. States and their subareas in hierarchical
sequence down to the block group level (the finest urban space partition available in the census). The
geography of the block group partition changes over the decades to keep track with demographic changes
within the Counties of each State.

17The ACS estimates of population counts should be interpreted as average measures across the 2010-
2014 time frame. The survey runs over a five years period to guarantee the representativeness of income
and demographic estimates at the block group level.
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income intervals in the census 1980, 25 in the census 1990 and 16 in the census 2000 and in

the ACS. In all cases, the highest income bracket is not top-coded. We use a methodology

based on Pareto distribution fitting as in Nielsen and Alderson (1997), to convert tables of

household counts across income intervals into a vector of representative incomes for each

income interval, along with the associated vector of households frequencies corresponding

to these incomes.18 Estimates of incomes and household frequencies vary across block

groups, implying strong heterogeneity within the city in block-group specific household

gross income distributions.

The STF 3A files and the ACS also provide tables of household counts by size (scoring

from 1 to 7 or more household members) for each block group. To draw conclusions about

the distribution of income across block groups that differ in households demographics, we

construct equivalence scales that are representative at the block group level (the square

root of average household composition in the block group level, obtained from households

counts information). We can hence convert the representative incomes at the block group

level into the corresponding equivalized incomes by scaling the estimated reference income

values by the block group-specific equivalence scale.

Income reference levels, population frequencies associated with these levels and equiv-

alence scales are estimated separately for each block group of a city in each census and

ACS years. All block groups are georeferenced, and measures of distance between the

block groups centroids can therefore be constructed. All income observations within the

18The procedure consists in fitting a Pareto distribution to the grouped data (population shares and
income thresholds) and then estimating references incomes within each interval. For income intervals
below the median, the estimated reference income is the midpoint of the interval. For other intervals,
estimates are obtained under the constraint that estimated average income at the block-group level should
coincide with the observed average income in the data. Estimated medians for top income intervals are
used as reference incomes, and empirical population counts as weights. Fitting methods consist in GMM
(preferred) and quantile estimation as in Quandt (1966). Alternative estimation methods draw instead
from the log-normality assumption, as in Wheeler and La Jeunesse (2008). Incomes estimates based on
the preferred method display an MSA-year level average correlation of 95.2% with quantile fitting income
estimates (MSA-years population weighted correlations range between min = 76% and max = 98.9%,
with 95% of the correlations larger than 89.3%), and 90.4% average correlation with log-normal fitting
income estimates at the block group level (MSA-years population weighted correlations range between
min = 45.6% and max = 97.1%, with 95% of the correlations larger than 85.1%).
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same block group are assumed to occur on its centroid. To identify the relevant urban

space, defining the extension of a city, we resort to the Census definition of a Metropolitan

Statistical Area (MSA) based on the 1980 Census definition.19 For each city-year pair

we therefore obtain an income database consisting of strings of incomes and frequency

weights at each geocoded location on the map. Thus, weighted variants of the GINI in-

dex estimators can be used to evaluate facts about spatial inequality at various distance

scales.

4.2 Patterns and trends

The distribution of the Gini indices calculated for the cites in our sample in each year is

considered, and the quartiles of the distribution (first quartile, median and third quartile)

are used to briefly describe each distribution. Figure 4 shows the quartiles of the distribu-

tions in years 1980, 1990, 2000 and 2014, together with the urban poverty concentration

measured for the five largest US cities in the same years. Urban poverty concentration

overall increased from 1980 to 1990, since the quartiles increased over this period. This

increase in urban poverty concentration also occurred in the largest cities, except Huston

where urban poverty concentration shows a decreasing trend. Urban poverty concentra-

tion generally decreased between 1990 and 2014, since the quartiles of the distribution in

2014 were lower than both the quartiles in 2000 and in 1990. New York, Chicago and

Dallas were among the top 25 percent of the cites in terms of urban poverty concentration

in 1980. Urban poverty concentration considerably decreased in these cities after 1990,

especially between 1990 and 2000, with Chicago and Dallas having urban poverty con-

centrations below the third quartile in 2014. New York remained in the top 25 percent

of cities in 2014, however the gap between its urban poverty concentration and the third

19The U.S. counties defining the MSAa in 1980 can be found at this link:
http://www.census.gov/population/metro/files/lists/historical/80mfips.txt. The 1980 Census defini-
tion of MSA guarantees comparability of estimates across urban areas that are expanding or shrinking
over the 35 years considered in this study.
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Figure 4: Urban poverty

Note: Trends of urban poverty for median, top and bottom quartile cities in the sample, and selected
cities.

quartile was far larger in 1980 than in 2014.

We now examine the neighborhood and non-neighborhood components of urban poverty

concentration. Figure 5 shows the neighborhood component of urban poverty concentra-

tion over the 1980-2014 period, while figure ?? shows the non-neighborhood component.

The comparison of the two figures indicates that the non-neighborhood component is pre-

dominant over the neighborhood component in the largest cities. Since the largest cities

have urban poverty concentrations above the median, the non-neighborhood component

plays a major role in urban poverty concentration in the most populous cities, especially

in those with higher urban poverty concentration (e.g., Dallas, Chicago). New York shows

a slightly different trend, since the gap between the non-neighborhood and neighborhood

components is not very large, even though the the former overcomes the latter. The trend

of the third quartile in figure 5 indicates an increase in the neighborhood component over

time, while the median and first quartile slightly changed their values. Unlike, the trends

of the quartiles for the non-neighborhood component of urban poverty concentration are

quite similar.
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Figure 5: Urban poverty

(a) Neighborhood (b) Non-neighborhood

(c) Neighborhood, relative (d) Non-neighborhood, relative

Note: Trends of components in urban poverty for median, top and bottom quartile cities in the sample,
and selected cities: Neighborhood component GN , non-neighborhood component GnN , in absolute (GN +
GnN = G) and relative (GN/G, GnN/G) terms.

We now focus on the components of the changes in urban poverty concentration in

the five largest cities over the period considered. Table 1 shows the decomposition re-

sults for three sub-periods (1980-1990, 1990-2000 and 2000-2014). Relative disparities

between neighborhood poverty incidences decreased in the three sub-periods in each of

the five cities since E is always negative, with both EN and EnN negative. This indi-

cates that disparities between poverty incidences reduced both among neighboring census

tracts and among non-neighboring census tracts over the period considered. However,

the contribution of E was partially offset by the re-ranking contribution, reducing the

equalizing effect of the change in disparities between neighborhood poverty incidences.

The re-ranking effect totally offset the effect of E during the 1980-1990 sub-period in all

cities except Houston, increasing urban poverty concentration over that sub-period. The

contribution of W was generally less important than those of the other components.
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Table 1: Urban poverty and decomposition of its changes in largest American cities:
1980-2014

New York
component G2014 G1980 ∆G W R E C D

N 0.17019 0.18415 -0.01396 -0.00130 0.03023 0.04660 0.92052 0.04289
nN 0.29364 0.32194 -0.02829 -0.00478 0.04915 0.07894 0.92052 0.07267

total 0.46383 0.50609 -0.04226 -0.00608 0.07938 0.12554 0.92052 0.11556
Los Angeles

component G2014 G1980 ∆G W R E C D
N 0.10111 0.10991 -0.00880 -0.00145 0.02405 0.04374 0.71796 0.03140
nN 0.27417 0.30090 -0.02674 -0.00314 0.05852 0.11438 0.71796 0.08212

total 0.37527 0.41082 -0.03554 -0.00459 0.08257 0.15812 0.71796 0.11352
Chicago

component G2014 G1980 ∆G W R E C D
N 0.05433 0.07874 -0.02441 -0.00430 0.01296 0.05498 0.60145 0.03306
nN 0.38709 0.47047 -0.08338 0.00208 0.08551 0.28427 0.60145 0.17097

total 0.44143 0.54921 -0.10779 -0.00222 0.09847 0.33924 0.60145 0.20404
Huston

component G2014 G1980 ∆G W R E C D
N 0.08204 0.09308 -0.01104 0.00782 0.03574 0.11300 0.48318 0.05460
nN 0.32547 0.34059 -0.01513 0.04381 0.13542 0.40225 0.48318 0.19436

total 0.40751 0.43368 -0.02617 0.05163 0.17115 0.51525 0.48318 0.24896
Dallas

component G2014 G1980 ∆G W R E C D
N 0.05800 0.05770 0.00029 0.00666 0.02058 0.05310 0.50754 0.02695
nN 0.37657 0.39889 -0.02232 0.02838 0.13518 0.36623 0.50754 0.18588

total 0.43457 0.45660 -0.02203 0.03504 0.15576 0.41933 0.50754 0.21283

To do list:

• picture trends of median, 25 and 75 in each year.

• picture trends of large cities

• picture trends of each component

• picture patterns of different components

• picture patterns of components vs poverty incidence vs inequality vs pop size vs

poverty changes and poverty in initial period

• picture patterns of poverty concentration and changes by looking at gentrification.
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• classify cities by components. Assign a dummy to those whose G grows more than

the median city in 2000 and over the following decade,then assign a dummy to each

component N and nN of growth: RN RnN EN EnN. These dummies can be assinged

wrt to the median city in a given year, or with respect to the relative weight of each

component (Rn/R¿¡1?) to indicate types of cities. Each city is an observation and

the dummies characterize a patterns of urban poverty and its change in that city.

We can hence construct groups. We then analyse how charcteristics of the cities

in 2000 affect the probability that a city belongs to one or the other group (hence

displaying a specific patterns of urban poverty)

• Use regression methods to assess the implications of gentrification on urban poverty

and on the components of urban poverty changes: model 1) studies the effect of

variables and past gentrification on 2000 urban poverty. Model 2) studies how the

same variables have affected changes in urban poverty over the decade.

4.3 Causes of urban poverty and the Big Sort hypothesis

TO BE COMPLETED

5 Conclusions

TO BE COMPLETED
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Supplemental appendix

A Proofs

A.1 Proof of Lemma 1

Proof. Consider first the case in which P1

N1
= . . . = Pz

Nz
= P ∗

N∗
and N1 = . . . = Nz = N∗

with P ∗ and N∗ two natural numbers such that P ∗

N∗
≤ ζ. Under axioms A1 and A2 we

write:

UP (.;α) = A(.;α)
z∑

i=1

N∗

N

(
P ∗/N∗

ζ
− 1

)
wi(.;α)

= A(.;α)
N∗

N

(
P ∗/N∗

ζ
− 1

) z∑

i=1

wi(.;α). (5)

Axioms A4 and A5 imply that (5) can be written as follows:

UP (.;α) = A(.;α)
N∗

N

(
P ∗/N∗

ζ
− 1

) z∑

i=1

(
z∑

j=1

N∗

N
−

i∑

j=1

N∗

N
+
N∗

N

)

= A(.;α)
N∗

N

(
P ∗/N∗

ζ
− 1

)
N∗

N

z∑

i=1

(z − i+ 1)

= A(.;α)
N∗

N

(
P ∗/N∗

ζ
− 1

)
N∗

N

z(z + 1)

2
. (6)

According to axiom A3, the index UP (.;α) can be also written as follows:

UP (.;α) = αHI = α
z∑

i

N∗

N

(
P ∗/N∗

ζ
− 1

)

= α
N∗

N

(
P ∗/N∗

ζ
− 1

)
z. (7)

Equating (6) to (7) and solving for A(.;α) we obtain the following specification for the
scaling coefficient:

A(.;α) =
2α

z + 1

N

N∗

=
2αz

z + 1

1

H
, (8)

where (8) follows from the fact that N∗ =
∑z

i=1
Ni

z
and from the definition of H.

Using the definition of rank-dependent weights consistent with axioms A4 and A5,
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and substituting for (8), we can write:

UP (.;α) =
2αz

z + 1

1

H

z∑

i=1

Ni

N

(
Pi/Ni

ζ
− 1

)( z∑

j=1

Nj

N
−

i∑

j=1

Nj

N
+
Ni

N

)

=
2αz

z + 1

1

H

[
1

ζ

z∑

i=1

Ni

N

Pi
Ni

(
z∑

j=1

Nj

N
−

i∑

j=1

Nj

N
+
Ni

N

)
−

z∑

i=1

Ni

N

(
z∑

j=1

Nj

N
−

i∑

j=1

Nj

N
+
Ni

N

)]
.(9)

We show now that the first term within square brackets in (9) can be expressed as a
function of known elements and of the Gini index G(.;α), measuring the unequal distri-
bution of poverty shares (Pi/Ni) across the neighborhood where poor people are mostly
concentrated.

Let mα denote the average incidence of poverty among the neighborhoods in which
poverty is more concentrated given poverty threshold defined by α, so that

mα =
z∑

i=1

1∑z
i=1Ni/N

Ni

N

Pi
Ni

. (10)

The Gini index G(.;α) can be written as follows:

G(.;α) =
1

2mα (
∑z

i=1 Nj/N)
2

z∑

i=1

z∑

j=1

Ni

N

Nj

N

∣∣∣∣
Pi
Ni

− Pj
Nj

∣∣∣∣

=
1

2mα (
∑z

i=1 Nj/N)
2

z∑

i=1

z∑

j=1

Ni

N

Nj

N

[
2 max

{
Pi
Ni

,
Pj
Nj

}
− Pi
Ni

− Pj
Nj

]

=
1

2mα (
∑z

i=1 Nj/N)
2

[
z∑

i=1

z∑

j=1

Ni

N

Nj

N
2 max

{
Pi
Ni

,
Pj
Nj

}
− 2

z∑

i=1

Ni

N

z∑

i=1

Ni

N

Pi
Ni

]
(11)

We now work out the first term appearing in squared brackets in (11), denoted max in
short-hand notation, to show that it can written as a function of the rank weights. First,
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let develop the double summations term as follows:

max =
z∑

i=1

z∑

j=1

Ni

N

Nj

N
max

{
Pi
Ni

,
Pj
Nj

}

=
N1

N

N1

N

P1

N1

+

(
N1

N

N2

N

P1

N1

+ . . .+
N1

N

Nz

N

P1

N1

)
+

+
N2

N

N1

N

P1

N1

+
N2

N

N2

N

P2

N2

+

(
N2

N

N3

N

P2

N2
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N2

N

Nz

N

P2

N2

)
+

+
N3

N

N1

N

P1

N1

+
N3

N

N2

N

P2

N2

+
N3

N

N3

N

P3

N3

+

(
N2

N

N4

N

P3

N3
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N3

N

Nz

N

P3

N3

)
+

. . .+
Nz−1

N

N1

N

P1

N1
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Nz−1

N

Nz−1

N

Pz−1

Nz−1

+
Nz−1

N

Nz

N

Pz−1

Nz−1

+

+
Nz

N

N1

N

P1

N1
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Nz

N

Nz

N

Pz
Nz

.

Rearranging the terms in the summation, this quantity can be equivalently written as:

max =
N1

N

P1

N1

(
z∑

j=1

Nj

N
+

z∑

j=2

Nj

N

)
+
N2

N

P2

N2

(
z∑

j=2

Nj

N
+

z∑

j=3

Nj

N

)
+

. . .+
Nz−1

N

Pz−1
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Nj

N
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)
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Nz

N
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Nz

Nz

N

=
z∑

i=1

Ni

N

Pi
Ni

(
Ni

N
+ 2

z∑

j=i+1

Nj

N

)
(12)

After adding and subtracting the quantity
∑z

i=1
Ni

N
Pi

Ni

Ni

N
, we obtain:

max =
z∑

i=1

Ni

N

Pi
Ni

(
2
Ni

N
+ 2

z∑

j=i+1

Nj

N

)
−

z∑

i=1

Ni

N

Pi
Ni

Ni

N

=
z∑

i=1

Ni

N

Pi
Ni

(
2
Ni

N
+ 2

(
z∑

j=1

Nj

N
−

i∑

j=1

Nj

N

))
−

z∑

i=1

Ni

N

Pi
Ni

Ni

N

= 2
z∑

i=1

Ni

N

Pi
Ni

(
z∑

j=1

Nj

N
−

i∑

j=1

Nj

N
+
Ni

N

)
−

z∑

i=1

Ni

N

Pi
Ni

Ni

N
, (13)

where the term in parenthesis in (13) coincide with the rank weights identified by axioms
A4 and A5. We can now substitute the term max in (11) with the expression (13). Using
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the explicit formula for mα, we obtain:

G(.;α) =
1

(
∑z

i=1Nj/N)
2∑z

i=1
1∑z

i=1Ni/N
Ni

N
Pi

Ni

[
2
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N

Pi
Ni

(
z∑

j=1

Nj

N
−

i∑

j=1

Nj

N
+
Ni

N

)
−

z∑

i=1

Ni

N

Pi
Ni

Ni

N

]
−

− 1

(
∑z

i=1Nj/N)
2∑z

i=1
1∑z

i=1Ni/N
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N
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N
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N
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− 1 (14)

The second term of (14) is a function of z. If the number of neighborhood is large enough,
and the neighbrohood are small enough in size, this term converges to zero at a rate that
is quadratic in the demographic size of the neighborhood. Hereafter we maintain that the
number of neighborhoods is large, so that the rank weights in (14) can be approximated
as follows:

z∑

i=1

Ni

N

Pi
Ni

(
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j=1

Nj

N
−
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j=1
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+
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≈ 1
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. (15)

Substituting (15) into (9) and using the fact that

z∑

i=1

Ni
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,

we get:

UP (.;α) =
2αz

z + 1

1

H

[
1

2
(G(.;α) + 1)

z∑

i=1

Ni

N
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.(16)

Adding and subtracting the term 1
2
(Gα + 1) (

∑z
i=1Ni/N)

2
within square brackets in (16)
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we obtain:

UP (.;α) =
2αz

z + 1

1

H

[
1

2
(G(.;α) + 1)H2I +

1

2
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I + (I + 1)G(.;α)− 1 +

2

H2

z∑

i=1

Ni

N

i−1∑
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,

which concludes the proof.

A.2 Proof of Theorem 1

Proof. Axioms A1-A5 are equivalent to (4). For any given configuration A with n
neighborhoods, consider now an alternative configuration A′ with n′ > n neighborhoods

obtained from A by operations of splitting of neighborhoods, so that
(
NA1
N
, . . . , N

A
n

N

)
→

(
NA
′

1

N
, . . . ,

NA
′

n′
N

)
and

NA
′

i

N
= 1

n′
for any i = 1, . . . , n′. Let z′ be the poverty line at given α

and for PA
′

NA′
= PA

′

NA′
. We can hence write for UP (A′;α):

2
z′∑

i=1

NA
′

i

NA′

i−1∑

j=1

NA
′

j

NA′
= 2

z′∑

i=1

1

n′

i−1∑

j=1

1

n′
=

2

n′2

n′∑

i=1

(i− 1)

=
2

n′2

(
n′(n′ + 1)

2
− n′

)
=
n′ − 1

n′
≈ 1, (17)

when the number of neighborhood n′ is large. From Axiom A8 it follows that z → n and
H → 1. Axiom A7 along with the fact that n is large imply that there always exists a
neighborhood z such that Pz

Nz
≈ α P

N
. Axiom A8 would then give:

lim
n→∞

I = lim
n→∞

z∑

i=1

Ni/N∑z
i=1 Ni/N

(
Pi/Ni

Pz/Nz

− 1

)
=

1

α

n∑

i=1

Ni

N

Pi/Ni

P/N
− 1 = 0.

Axiom A6, along with the result in (17) and the fact that H = 1 and I = 0 under
axioms A7 and A8, give that UP (A, α) = G(A).

A.3 Proof of Corollary 1

Proof. Let neighborhood i be the neighborhood having rank i when neighborhoods are
sorted in decreasing order of neighborhood poverty incidence. To simplify notation, let
pi = Pi

Ni
and si = Ni

N
denote the poverty incidence and population share of neighborhood

i, respectively.
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Let p = (p1, . . . , pn)T be the n × 1 vector of neighborhood poverty incidences sorted in
decreasing order and s = (s1, . . . , sn)T be the n×1 vector of the corresponding population
shares. A configuration is fully identified by the pair (s,p), and is used interchangeably.
Let 1n being the n×1 vector with each element equal to 1, P is the n×n skew-symmetric
matrix:

P =
1

p̄

(
1np

T − p1Tn
)

=




p1−p1
p̄

· · · pn−p1
p̄

...
. . .

...
p1−pn

p̄
· · · pn−pn

p̄


 , (18)

where p̄ is the overall poverty incidence in the city. The elements of P are the n2 relative
pairwise differences between the neighborhood poverty incidences as ordered in p. Let
S = diag {s} be the n×n diagonal matrix with diagonal elements equal to the population
shares in s, and G be a n×n G-matrix (a skew-symmetric matrix whose diagonal elements
are equal to 0, with upper diagonal elements equal to −1 and lower diagonal elements
equal to 1) (Silber 1989). The Gini index of urban poverty is expressed in matrix form:

G (s,p) =
1

2
tr
(
G̃PT

)
, (19)

where the matrix G̃ = SGS is the weighting G-matrix, a generalization of the G-matrix
introduced by Mussini and Grossi (2015) to add weights in the calculation of the Gini
index. Suppose that neighborhood poverty incidences and population shares are observed
in times t and t′. Let pt be the n×1 vector of the t poverty incidences sorted in decreasing
order and st be the n×1 vector of the corresponding population shares. Let pt′ be the n×1
vector of the t′ poverty incidences sorted in decreasing order and st′ be the n × 1 vector
of the corresponding population shares. The change in urban poverty concentration from
t to t′ is measured by the difference between the Gini index in t′ and the Gini index in t:

∆UP = G (st′ ,pt′)−G (st,pt) =
1

2
tr
(
G̃t′P

T
t′

)
− 1

2
tr
(
G̃tP

T
t

)
. (20)

Equation (20) can be broken down into three components by applying the matrix approach
used in Mussini and Grossi (2015) and in Mussini (2017). The three components separate
the contributions of changes in neighborhood population shares, ranking of neighborhoods
and disparity of neighborhood poverty incidences. Let st|t′ stand for the n × 1 vector of
the t population shares arranged by the decreasing order of the corresponding t′ poverty
incidences. Let λ = p̄t′/p̄t′|t be the ratio of the actual t′ overall poverty incidence to
the fictitious t′ overall poverty incidence which is the weighted average of t′ poverty
incidences where the weights are the corresponding population shares in t. After defining
St|t′ = diag

{
st|t′
}

, the Gini index of t′ neighborhood poverty incidences calculated by
using the t neighborhood population shares is

G
(
st|t′ ,pt′

)
=

1

2
tr
(
St|t′GSt|t′ λP

T
t′

)

=
1

2
tr
(
G̃t|t′ λP

T
t′

) (21)
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where G̃t|t′ = St|t′GSt|t′ is the weighting G-matrix obtained by using the neighborhood
population shares in t instead of those in t′. In equation (21), the multiplication of PT

t′

by λ ensures that the pairwise differences between the t′ neighborhood poverty incidences
are divided by p̄t′|t instead of p̄t′ . By adding and subtracting G

(
st|t′ ,pt′

)
in equation

(20), the contribution to ∆UP due to changes in neighborhood population shares can be
separated from that attributable to changes in disparities between neighborhood poverty
incidences:

∆UP =

[
1

2
tr
(
G̃t′P

T
t′

)
− 1

2
tr
(
G̃t|t′ λP

T
t′

)]
+
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1

2
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G̃t|t′ λP

T
t′

)
− 1

2
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(
G̃tP

T
t

)]

=
1

2
tr
(
WPT

t′

)
+

[
1

2
tr
(
G̃t|t′ λP

T
t′

)
− 1

2
tr
(
G̃tP

T
t

)]

= W +

[
1

2
tr
(
G̃t|t′ λP

T
t′

)
− 1

2
tr
(
G̃tP

T
t

)]
,

(22)

where W = G̃t′ − λG̃t|t′ . Component W measures the effect of changes in neighborhood
population shares. A positive value of W indicates that the weights assigned to more
unequal pairs of neighborhoods are larger in t′ than in t, increasing urban poverty con-
centration from t to t′. A negative value of W indicates that the weights assigned to
more unequal pairs of neighborhoods are smaller in t′ than in t, reducing urban poverty
concentration from t to t′.
The difference enclosed within square brackets on the right-hand side of equation (22)
can be additively split into two components: one component measuring the re-ranking of
neighborhoods, a second component measuring the change in disparity of neighborhood
poverty incidences. Let pt′|t be the n × 1 vector of t′ neighborhood poverty incidences
sorted in decreasing order of the respective t neighborhood poverty incidences, and B
be the n × n permutation matrix re-arranging the elements of pt′ to obtain pt′|t , that is

pt′|t = Bpt′ . Matrix Pt′|t =
(
1/p̄t′|t

) (
1np

T
t′|t − pt′|t1

T
n

)
contains the n2 relative pairwise

differences between the neighborhood poverty incidences as arranged in pt′|t . The con-
centration index of the t′ poverty incidences sorted by the t poverty incidences, calculated
by using the t population shares, is defined as follows:

C
(
st,pt′|t

)
=

1

2
tr
(
G̃tP

T
t′|t

)
. (23)

By using permutation matrix B, the concentration index C
(
st,pt′|t

)
can be re-written

as a function of Pt′ instead of Pt′|t . Since Pt′|t = BλPt′B
T , the concentration index

C
(
st,pt′|t

)
expressed as a function of Pt′ becomes

C
(
st,pt′|t

)
=

1

2
tr
(
G̃tBλP

T
t′B

T
)

=
1

2
tr
(
BT G̃tBλP

T
t′

)
.

(24)
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By adding C
(
st,pt′|t

)
as expressed in (23) and subtracting it as expressed in (24) to the

difference enclosed within square brackets on the right-hand side of equation (22), we
obtain

1
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=
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G̃t|t′ −BT G̃tB
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λPT
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]

+
1
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tr
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(
PT
t′|t −PT

t

)]

=
1

2
tr
(
RλPT
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)
+

1

2
tr
(
G̃tD

T
)

= R +D,

(25)

where R = G̃t|t′ −BT G̃tB and D = Pt′|t −Pt. Component R measures the effect of re-
ranking of neighborhoods from t to t′ and its contribution to the change in urban poverty
concentration is always non-negative. The nonzero elements of R indicate the pairs of
neighborhoods which have re-ranked from t to t′.
Component D measures the effect of disproportionate change between neighborhood
poverty incidences. The generic (i, j)-th element of D compares the relative difference
between the t poverty incidences of the neighborhoods in positions j and i in pt with the
relative difference between the t′ poverty rates of the same two neighborhoods in pt′|t . A
negative value of D means that relative disparities in neighborhood poverty incidences
have overall decreased from t to t′, reducing urban poverty concentration. A positive value
of D indicates that relative disparities in neighborhood poverty incidences have overall
increased from t to t′, increasing urban poverty concentration. If all neighborhood poverty
incidences have changed by the same proportion from t to t′, then D = 0.
Given equations (22) and (25), a three-term decomposition of ∆UP is obtained:

∆UP =
1

2
tr
(
WPT

t′

)
+

1

2
tr
(
RλPT

t′

)
+

1

2
tr
(
G̃tD

T
)

= W +R +D. (26)

Since component D would not reveal changes in neighborhood poverty incidences if all
neighborhood poverty incidences changed by the same proportion, this component is
split into two further terms: one measuring the change in overall poverty incidence, the
second measuring the changes in disparities between neighborhood poverty incidences by
assuming that overall poverty incidence remains the same from t to t′. Let c stand for the
change in overall poverty incidence by assuming that neighborhood population shares are
unchanged from t to t′:

c =
p̄t′|t − p̄t

p̄t
. (27)

Let pct′|t = pt + cpt be the vector of neighborhood poverty incidences we would observe
in t′ if every neighborhood poverty incidence changed by proportion c. This implies that
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p̄ct′|t = p̄t′|t . Vector pt′|t can be expressed as

pt′|t = pct′|t + pδt′|t ,

where the elements of vector pδt′|t are the element-by-element differences between vectors
pt′|t and pct′|t . Since pct′|t = pt + cpt, pt′|t can be re-written as

pt′|t = pt + pδt′|t︸ ︷︷ ︸
pe

t′|t

+cpt (28)

= pet′|t + cpt,

where the elements of pet′|t account for disproportionate changes in neighborhood poverty
incidences from t to t′, as pet′|t would equal pt if there were no disproportionate changes

in neighborhood poverty incidences. Given equations (27) and (29), matrix Pt′|t can be
written as

Pt′|t =
(
1/p̄t′|t

) (
1np

T
t′|t − pt′|t1

T
n

)
(29)
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1
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=
1

1 + c
Pe
t′|t +

c

1 + c
Pt.

Since matrix D in equation (26) is obtained by subtracting Pt from Pt′|t, D can be
re-written as

D = Pt′|t −Pt (30)

=
1

1 + c
Pe
t′|t +

c

1 + c
Pt −Pt

=

(
1

1 + c

)

︸ ︷︷ ︸
C

(
Pe
t′|t −Pt

)
︸ ︷︷ ︸

E

= CE

By replacing D in equation (26) with its expression in equation (30), the decomposition
of the change in urban poverty concentration becomes

∆UP =
1

2
tr
(
WPT

t′

)
+

1

2
tr
(
RλPT
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)
+ C

1

2
tr
(
G̃tE

T
)

= W +R + CE. (31)
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A.4 Proof of Corollary 2

Proof. Let Nt be the n × n spatial weights matrix having its (i, j)-th entry equal to
1 if and only if the (i, j)-th element of Pt is the relative difference between the poverty
incidences of two neighboring neighborhoods, otherwise the (i, j)-th element of Nt is
0. Using the Hadamard product,20 the relative pairwise differences between the poverty
incidences of neighboring neighborhoods can be selected from Pt:

PN,t = Nt �Pt. (32)

For each pair of neighborhoods, the relative difference between the t′ poverty incidences
of two neighborhoods in Pe

t′|t has the same position as the relative difference between their
t poverty incidences in Pt. Thus, Nt also selects the relative pairwise differences between
neighboring neighborhoods from Pe

t′|t :

Pe
N,t′|t = Nt �Pe

t′|t . (33)

Since E = Pe
t′|t − Pt, the Hadamard product between Nt and E is a matrix with

nonzero elements equal to the elements of E pertaining to neighboring neighborhoods:

EN = Pe
N,t′|t −PN,t = Nt �

(
Pe
t′|t −Pt

)
= Nt � E. (34)

Let Nt′ be the n×n spatial weights matrix having its (i, j)-th entry equal to 1 if and only
if the (i, j)-th element of Pt′ is the relative difference between the poverty incidences of
two neighboring neighborhoods, otherwise the (i, j)-th element of Nt′ is 0. The Hadamard
product of Nt′ and Pt′ is the matrix

PN,t′ = Nt′ �Pt′ . (35)

The nonzero elements of PN,t′ are the relative pairwise differences between the t′ poverty
incidences of neighboring neighborhoods.

The decomposition of the change in the neighbor component of urban poverty concen-
tration is obtained by replacing Pt′ and E in equation (31) with PN,t′ and EN respectively:

∆UPN =
1

2
tr
(
WPT

N,t′

)
+

1

2
tr
(
RλPT

N,t′

)
+ C

1

2
tr
(
G̃tE

T
N

)
= WN +RN + CEN . (36)

Let Jn be the matrix with diagonal elements equal to 0 and extra-diagonal elements equal
to 1, the matrix with nonzero elements equal to the relative pairwise differences between
the t′ poverty incidences of non-neighboring neighborhoods is

PnN,t′ = (Jn −Nt′)�Pt′ . (37)

The matrix selecting the elements of E pertaining to the pairs of non-neighboring neigh-

20Let X and Y be k × k matrices. The Hadamard product X�Y is defined as the k × k matrix with
the (i, j)-th element equal to xijyij .
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borhoods is
EnN = (Jn −Nt)� E. (38)

The decomposition of the change in the non-neighbor component of urban poverty con-
centration is obtained by replacing Pt′ and E in equation (31) with PnN,t′ and EnN ,
respectively:

∆UPnN =
1

2
tr
(
WPT

nN,t′

)
+

1

2
tr
(
RλPT

nN,t′

)
+ C

1

2
tr
(
G̃tE

T
nN

)
= WnN +RnN + CEnN .

(39)
Given equations (39) and (36), the spatial decomposition of the change in urban poverty
concentration is

∆UP = WN +WnN +RN +RnN + C (EN + EnN) . (40)
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B Testing for changes in urban poverty and its com-

ponents

The significance of the decomposition in Corollary 2 is conditional on the statistical sig-
nificance of the spatial component of urban poverty. To verify this point, it is sufficient
to test the hypothesis that urban poverty is randomly distributes across the neighbor-
hoods of the city, versus an unrestricted alternative of spatial association in poverty rates
distributions. If the null hypothesis is rejected in each configuration (in year t and t′),
the spatial decomposition of changes in urban poverty changes should bear meaningful
information about spatial patterns of concentrated poverty.

We use the Rey and Smith nonparametric test (Rey and Smith 2013) for detecting
spatial association in urban poverty exploiting the result in Theorem 1. For a given contin-
gency matrix N, we decompose total urban poverty in configuration A (UP (A = G(A))
into a component accounting for urban poverty among close neighborhoods (GN(A)) and
a component accounting for urban poverty among neighborhoods not related by spatial
proximity (GnN(A)). This decomposition gives UP (A) = GN(A) + GnN(A). The test
statistic is the ratio (Rey and Smith 2013):

SG =
GnN(A)

G(A)
,

which is the share of urban poverty explained by the disparities between non-neighboring
census tracts. Inference on SG under the null hypothesis that the spatial configuration
of neighborhood is irrelevant for assessing urban inequality changes is based on random
spatial permutations of the observed poverty rates with their population shares across
actual neighborhoods in order to simulate spatial randomness. Each permutation ran-
domly re-assigns poverty rates with their population shares to census tracts. Thus, for
M random spatial permutations, M random maps are obtained. For each map m, with
m = 1, ...,M , the statistic SGm is calculated. Define ŜG as the observed value of the
test statistic SG, we define the indicator M̂ =

∑M
m=1 1[SGm ≥ ŜG] be the number of the

M random permutations producing SG values that exceed or are equal to the observed
value ÂG. A one-tailed pseudo significance level for the observed test statistic is:

p(SG) =
1 + M̂

1 +M
.

The pseudo p-value p(SG) is obtained by comparing ŜG to the distribution constructed
under the null hypothesis that poverty rates with their population shares are randomly
distributed between census tracts.

We use this statistics to verify the significance of the spatial decomposition in each of
the base years used to assess urban poverty changes. Observing pseudo p-values less than
0.05 for a reasonably large number of permutations for at least one year would signal
rejection of the null hypothesis that the spatial configuration of concentrated poverty
does not affect urban poverty. This would call for considering the spatial decomposition
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of urban poverty changes in Corollary 2.
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C Additional results

Table 2: decomposition of changes in urban poverty concentration.

Los Angeles
period component Gt′ Gt ∆G W R E C D

N 0.11461 0.10991 0.00470 -0.00071 0.01189 -0.00706 0.91718 -0.00648
80-90 nN 0.30602 0.30090 0.00512 -0.00619 0.02616 -0.01619 0.91718 -0.01485

total 0.42063 0.41082 0.00982 -0.00691 0.03805 -0.02325 0.91718 -0.02133
N 0.10632 0.11337 -0.00705 -0.00157 0.01109 -0.01974 0.83985 -0.01658

90-00 nN 0.29075 0.30726 -0.01651 0.00050 0.02513 -0.05018 0.83985 -0.04215
total 0.39707 0.42063 -0.02357 -0.00106 0.03622 -0.06992 0.83985 -0.05873
N 0.10010 0.10557 -0.00546 0.00017 0.01355 -0.02064 0.92940 -0.01918

00-14 nN 0.27517 0.29150 -0.01633 0.00331 0.03147 -0.05499 0.92940 -0.05111
total 0.37527 0.39707 -0.02179 0.00348 0.04502 -0.07563 0.92940 -0.07029

Chicago
period component Gt′ Gt ∆G W R E C D

N 0.08086 0.07874 0.00211 -0.00063 0.00522 -0.00286 0.86459 -0.00247
80-90 nN 0.48125 0.47047 0.01078 -0.01077 0.03242 -0.01257 0.86459 -0.01087

total 0.56211 0.54921 0.01290 -0.01140 0.03764 -0.01542 0.86459 -0.01334
N 0.06969 0.07902 -0.00933 -0.00169 0.00523 -0.01299 0.99123 -0.01288

90-00 nN 0.44149 0.48309 -0.04160 0.00096 0.02789 -0.07107 0.99123 -0.07045
total 0.51118 0.56211 -0.05093 -0.00072 0.03312 -0.08406 0.99123 -0.08332
N 0.05382 0.06860 -0.01477 -0.00292 0.00796 -0.02905 0.68242 -0.01982

00-14 nN 0.38760 0.44258 -0.05498 0.00641 0.05099 -0.16468 0.68242 -0.11238
total 0.44143 0.51118 -0.06976 0.00349 0.05895 -0.19373 0.68242 -0.13220

Dallas
period component Gt′ Gt ∆G W R E C D

N 0.05988 0.05770 0.00218 0.00114 0.00845 -0.01034 0.71674 -0.00741
80-90 nN 0.41259 0.39889 0.01369 0.01110 0.05103 -0.06758 0.71674 -0.04844

total 0.47247 0.45660 0.01587 0.01224 0.05948 -0.07792 0.71674 -0.05585
N 0.06033 0.06307 -0.00274 0.00161 0.00734 -0.01156 1.01135 -0.01169

90-00 nN 0.38628 0.40939 -0.02311 0.01266 0.03814 -0.07309 1.01135 -0.07391
total 0.44661 0.47247 -0.02586 0.01427 0.04548 -0.08465 1.01135 -0.08561
N 0.05764 0.05721 0.00043 0.00295 0.01005 -0.01949 0.64462 -0.01256

00-14 nN 0.37693 0.38941 -0.01247 0.01984 0.05592 -0.13688 0.64462 -0.08824
total 0.43457 0.44661 -0.01204 0.02279 0.06597 -0.15637 0.64462 -0.10080

Houston
period component Gt′ Gt ∆G W R E C D

N 0.09102 0.09329 -0.00227 0.00483 0.01445 -0.03713 0.58055 -0.02155
80-90 nN 0.33113 0.34032 -0.00919 0.01653 0.05303 -0.13565 0.58055 -0.07875

total 0.42215 0.43361 -0.01146 0.02136 0.06748 -0.17278 0.58055 -0.10031
N 0.08649 0.09079 -0.00430 0.00336 0.00738 -0.01466 1.02616 -0.01505

90-00 nN 0.32326 0.33135 -0.00809 0.01366 0.02881 -0.04928 1.02616 -0.05057
total 0.40975 0.42215 -0.01239 0.01703 0.03619 -0.06394 1.02616 -0.06561
N 0.08401 0.08469 -0.00068 0.00485 0.01335 -0.02528 0.74680 -0.01888

00-14 nN 0.32334 0.32506 -0.00172 0.01445 0.05133 -0.09039 0.74680 -0.06750
total 0.40735 0.40975 -0.00240 0.01930 0.06468 -0.11567 0.74680 -0.08638

New York
N 0.19171 0.18353 0.00818 -0.00209 0.01386 -0.00323 1.10718 -0.00358

80-90 nN 0.34283 0.32255 0.02028 -0.00028 0.02365 -0.00279 1.10718 -0.00309
total 0.53454 0.50608 0.02846 -0.00237 0.03750 -0.00602 1.10718 -0.00667
N 0.18495 0.20161 -0.01666 -0.00081 0.01270 -0.03258 0.87642 -0.02855

90-00 nN 0.30423 0.33293 -0.02870 -0.00323 0.02022 -0.05213 0.87642 -0.04569
total 0.48918 0.53454 -0.04536 -0.00404 0.03292 -0.08471 0.87642 -0.07424
N 0.17059 0.17928 -0.00869 0.00028 0.01806 -0.02843 0.95085 -0.02703

00-14 nN 0.29324 0.30990 -0.01666 0.00101 0.03086 -0.05104 0.95085 -0.04854
total 0.46382 0.48918 -0.02535 0.00129 0.04893 -0.07947 0.95085 -0.07557
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