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Abstract

We develop the theory of behavioural types in social dilemma games by experimentally

studying four public goods voluntary contributions games in which the incentive structures are

varied. We replicate previous studies by identifying free-riders, as well as two distinct groups

of conditional cooperators (strong and weak), as comprising a supermajority of participants

when payoffs are linear. Strong conditional cooperators, who match contributions one-for-

one in the linear game, display sophisticated behaviour in games with nonlinear payoffs: they

match one-for-one only when doing so improves social welfare. This mode of conditional

cooperation appears to be underpinned by a sophisticated understanding and assessment of the

financial incentives presented by the game.
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1 Introduction

The extensive literature on laboratory experiments in social dilemma games reports frequent and
often substantial levels of cooperative behaviour. The survey of Chaudhuri (2011) reviews the ev-
idence in the case of public goods games. In the usual voluntary contributions mechanism (VCM)

∗For many helpful comments, we thank seminar participants at University of Nottingham and Queen’s University
Belfast; conference participants at the European Meetings of the Economic Science Association; as well as Abigail
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setup of public goods games, an individual can contribute none, some, or all of her private en-
dowment to a “public account,” which yields benefits to all members of a group. The dilemma
arises when, as is usual in experiments, an individual’s private marginal benefit of contribution is
less than their cost of contribution, while the overall marginal group benefit exceeds the cost of
contribution.

Emerging from the work of Fischbacher et al. (2001) and Fischbacher and Gächter (2010),
among others, is an account in which many, but far from all, players in VCM games are condi-
tional cooperators. Players are more inclined to make contributions when they have seen others
contribute, or when they anticipate others will contribute. Such an account organises the behaviour
commonly seen when a VCM game is played repeatedly among the same group of participants,
in which contribution levels start out relatively high, and then decline with repetition. Conditional
cooperators may be willing initially to contribute in anticipation of the contributions of others.
The presence of free-riders would result in lower-than-hoped-for contributions, resulting in those
conditional cooperators lowering their expectations for contributions of others, and therefore their
own contributions as well.

Explaining the willingness of participants to contribute has been an important focus of the
social dilemma literature. Andreoni (1995b) addressed the question by comparing behaviour in
a standard linear VCM with related games in which motives for kind behaviour are absent. He
finds evidence that potential confusion decreases quickly with experience, and therefore confu-
sion cannot alone explain the persistence of positive contributions in the linear VCM. In contrast,
Burton-Chellew et al. (2016) classify participants in a linear VCM experiment based on the method
of Fischbacher et al. (2001), and report that most participants classified as conditional cooperators
fail to answer correctly when asked about their understanding of the financial incentives of the
game.

While the literature offers a variety of reasons to explain conditional cooperation, little is known
about how robust this behaviour is across variations in the strategic structure of interactions. The
linear VCM places the contribution level that maximises a participant’s payoff at zero, which is
on the boundary of the set of possible contributions. The pure altruist model of Andreoni (1990)
allows for a general structure of preferences over private and public good consumption. For many
specifications of this model, the contribution that maximises a player’s earnings will be greater
than zero, at least for some possible choices of the other players.

In particular, contributions to the public good in real-world settings might be strategic substi-
tutes. Parents with school-aged children are often asked to volunteer to chaperone on a number
of class field trips throughout the year. If other parents are not available or willing to volunteer,
then the optimal response for a family is to volunteer as much as possible, as, in the most extreme
case, an insufficient number of chaperones might lead to cancellation of trips, disappointing the
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children. However, the value of additional chaperones, beyond a certain number, is minimal. If a
family anticipates there will be many volunteers among the other parents, then they would likely
respond by putting themselves forward for fewer events.

Equally, contributions to the public good might be strategic complements. Online review sites
aggregate the comments and evaluations of many people on restaurants, hotels, and other products.
Using information about the reviews of others, these sites can offer generic recommendations.
However, the more an individual submits reviews of their own experiences, the more it is possible
for a site to offer customised recommendations, such as “Other users who liked the Red Lion Pub
also recommended the Lamb Inn.” In such a system, if others are contributing many recommen-
dations, an individual might have incentives to contribute many recommendations themselves, to
help “train” the system to give them good recommendations for new products to try.

Aside from capturing the rich possibilities for externalities found in real-world public goods,
public goods games with nonlinear payoff structures can provide evidence for distinguishing among
candidate explanations for behaviour. If conditional cooperators are following a generic heuristic,
along the lines of Emily Post’s “do as others do” advice, this should be observed irrespective of
the strategic structure of the game, and by extension the financial incentives of its experimental
implementation. However, other types of reasoning can generate conditional cooperation in the
linear game, including a desire not to be exploited by free-riders, or as a type of focal point for
selecting which socially-improving contribution level to choose from among many possibilities.
Contribution patterns in nonlinear games can provide evidence as to the possible motivations of
conditionally cooperative participants, and indeed whether they continue to be conditionally co-
operative at all in games where positive contributions to the public good are expected even from
participants who care only about their own earnings.

In this paper we find strong evidence that a substantial fraction of participants make a con-
scious and well-informed decision to behave in a conditionally cooperative way. We apply the
contingency-choice framework of Fischbacher et al. (2001) to public goods games with nonlinear
financial payoffs. Standard instructions for linear VCMs present a participant’s endowment in the
form of tokens which can be allocated either to the public good or kept for private consumption.
We develop a new choice architecture, based on separately-identified tokens, which outlines the
marginal financial incentives of allocating each token to both the participant and to the group. Fol-
lowing the methodology of Fallucchi et al. (2017), using data from a linear VCM we find evidence
for a clear distinction between two types of conditional cooperators, which are conflated in the
typology used by Burton-Chellew et al. (2016): strong conditional cooperators, who match antic-
ipated contributions one-for-one, and weak conditional cooperators, who match at a lower rate.
We find that when playing nonlinear VCMs, strong conditional cooperators predominantly follow
a sophisticated rule: they continue to match contributions one-for-one only when this implies a
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contribution above the amount that would maximise their own earnings. If low contributions by
other players are anticipated, strong conditional cooperators instead choose the contribution which
maximises their own earnings. The sophistication of this response pattern, and the fact that it is
adopted by a substantial number of participants, is not consistent with a misunderstanding of the
financial incentives.

The workhorse linear payoff structure employed in a majority of VCM experiments is attractive
due to its ease of explanation without requiring participants to deal with arithmetic to determine
their responses. However, explaining incentives in nonlinear games is more difficult; Andreoni
(1993), Keser (1996), and Chan et al. (2002) used payoff tables, and Gronberg et al. (2012) used
a visualisation of the payoff surface; these methods generally focus on conveying how the partic-
ipant’s own earnings depend on the decisions of the participant and the others in the group. In
our novel choice architecture, we represent the participant’s endowment by separately-numbered
tokens. Each token is labeled with its (marginal) earnings consequences if allocated to the public
good, or if allocated to private consumption. This contrasts with most protocols which ask how

many tokens to allocate. It is known that how this allocation question is framed can affect be-
haviour. (Andreoni, 1995a) Our design presents the public and private consumption options sym-
metrically. The labeling of tokens with their marginal consequences simplifies the presentation
of nonlinear incentives, while communicating for each token the tradeoff between own earnings
and group earnings. In addition, the use of this choice architecture provides a robustness check
on contribution behaviour in the linear game. Using the classification method of Fallucchi et al.
(2017), the proportions of behavioural types in our game are similar to those found in previous
studies. The robustness of behavioural types to the choice architecture used to elicit them supports
the hypothesis that, at least for many participants, the reported choices are based on an informed
understanding of the structure of the game.1

The remainder of the paper is structured as follows. In Section 2 we introduce the theoretical
framework. In Section 3 we provide a description the experimental design with a particular em-
phasis on the choice architecture. Section 4 contains the data analyses and results. We conclude in
Section 5 with a discussion.

2 Theoretical framework

There are N players, i = 1, . . . , N . Each player i has an endowment ωi > 0 of resources, which
she can allocate between private consumption xi and a contribution towards a public good gi, where
xi + gi = ωi. The total amount contributed towards the public good is G =

∑N
j=1 gj . In a standard

1Prior to conducting the experiments, we were concerned that our explicit representation of the incentives in the
linear VCM would lead to significantly higher rates of free-riding behaviour. Our data conclusively reject this.

4



abuse of notation we will write G−i =
∑

j 6=i gj for the contributions of players other than i to the
public good. For a given private consumption xi and total contributions to the public good G, the
payoff of player i is given by a function Πi(xi, G).2 We assume that Πi is strictly increasing in
both xi and G.

Several studies have used nonlinear payoff functions to generate games in which the best re-
sponse for player i is to contribute a strictly positive amount gi to the project. Andreoni (1993) used
a Cobb-Douglas payoff specification; Cason and Gangadharan (2015) a piecewise-linear specifica-
tion; and Chan et al. (2002) a quadratic specification. Keser (1996), Sefton and Steinberg (1996),
Willinger and Ziegelmeyer (1999) and Gronberg et al. (2012) likewise used quadratic specifica-
tions, such that a strictly positive contribution was a dominant strategy.

In our experiment, we will specialize to the case in which ∂Πi

∂G
= 0.4. This derivative is often

called the marginal per-capita return (MPCR). We consider payoff functions of the form

Πi(xi, G) = α + (β1 − γG−i)xi − β2x
2
i + 0.4G. (1)

where β1 > 0 and β2 ≥ 0. When β2 = γ = 0, this is the additively separable and linear model,
and the best response is (g?i (G−i), x

?
i (G−i)) = (0, ω).

When β2 > 0, the payoff from private consumption is strictly concave in xi and the reaction
function for an interior solution is

x?i (G−i) =
β1 − γG−i − 0.4

2β2

,

The slope of the reaction function is determined by the sign of γ. If γ > 0, then xi is smaller if
G−i is larger; that is, player i wants to contribute more to the public good when others are making
larger contributions, whereas when γ < 0 player i wants to contribute less to the public good when
others’ contributions are higher.

We use the form (1) to determine the monetary payoffs in our experiment. This functional form
is additively separable in earnings received from resources xi allocated to private consumption,
and resources gi allocated to the project. In our experiment, we set parameters such that full
contribution of resources to the project maximises total earnings of the group.

2This is the general “pure altruist” model of Andreoni (1990).
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3 Experimental design

3.1 Payoff structure treatments

Participants were allocated at random into groups of four. For identification purposes, the member
IDs of the group were the four suits of a standard deck of cards (clubs, diamonds, hearts, and
spades). The icons for these suits were used extensively in the instructions as well as the decision
screens. Each participant’s instructions were customised based on their suit identification. For
example, the instructions for a participant with the identifier clubs (♣) consistently used phrasing
like “your ID (♣)” and “the other members of your group (♦♥♠).”3

Participants played a series of four public goods games. Each participant was endowed with 20
tokens, to be allocated between a public good (project) benefiting all four members of the group,
and a private account benefiting only the participant herself. In all games, the consequence of
allocating any token to the project was a payoff of 40p to each member of the group. The games
differed in the structure of the consequences to allocating tokens to the private account.

In the baseline game LINEAR, the value of each token allocated to the private account was
£1.00, irrespective of how many tokens were allocated. This is the same payoff structure as used
in Fischbacher et al. (2001), and results in a dominant strategy for own-earnings maximisers to
allocate all tokens to the private account.

We contrast this with three treatments in which the value of tokens allocated to the private
account depends on how many tokens are allocated. With the quadratic payoff specification, the
marginal value to the private account changed linearly in the number of tokens. We consider three
specifications:

• DOMINANT: The marginal value of a token allocated to the private account is decreasing in
the number of tokens, but is independent of the allocations of other players.

• SUBSTITUTES: The marginal value of a token allocated to the private account is decreasing
in the number of tokens, but is increasing in the number of tokens allocated to the project by
other group members.

• COMPLEMENTS: The marginal value of a token allocated to the private account is decreasing
in the number of tokens and in the number of tokens allocated to the project by other group
members increases.

The description for each of the specifications and the tables with the value of the allocations
to the private accounts are reported in Appendices A.1-A.4. The Nash equilibrium for allocations

3Complete instructions are available in Appendix A.
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to the project, assuming own-earnings maximisation, is 7 tokens in each of the nonlinear games.
Participants played all four games without feedback. After decisions for all four games were made,
one of the games was selected at random to determine payment.

3.2 Timing of moves

Following Fischbacher et al. (2001), allocations in each game were realized in a two-stage process.
In Stage 1, three of the four members of the group set their allocation. Then, in Stage 2, the
fourth member of the group would learn the average of the three other members’ contributions to
the project, and then set their allocation. Choices were elicited using a variation on the strategy
method. The identity of which member of the group would choose in Stage 2 was not determined
until the end of the experiment. Therefore, participants were asked to make decisions both for the
event in which they would make their allocation in Stage 1, and, respectively, in Stage 2.

Stage 1 consisted of a single decision about how many tokens to allocate to the project, which
Fischbacher et al. call the unconditional contribution. The Stage 2 decision was a complete sched-
ule of contributions, one for each possible average allocation by the other members of the group,
from 0 tokens up through 20 tokens; Fischbacher et al. refer to this as the contribution table.

Our instructions refer to the decisions as Stage 1 and Stage 2 decisions, rather than uncondi-
tional contributions and contribution tables as in Fischbacher et al.. Numbering the stages helps to
communicate the sequential realisation of the actual decisions, and eliminates the need for extra
jargon to describe the decisions.

3.3 The choice architecture

We elicited decisions using the graphical device shown in Figure 1, which we referred to as the
allocation panel in the instructions. Several considerations informed the design of this choice ar-
chitecture. Our starting point was the observation that many experiments in public goods games
describe the task as allocating tokens between a private account and the public good. Most ex-
periments then elicit the choice as the number of tokens to allocate, and express the earnings
consequences in terms of total earnings. When payoffs are not linear in the allocation, it is more
complicated to explain how earnings depend on choices, in a way that is accessible to participants.

The allocation panel instead expresses the decision on a token-by-token basis. Each token is
given a distinct number from 1 up to 20. Each token corresponds to two possible consequences,
depending on the allocation decision. There is one consequence if the token is allocated to the
project; in the case of our experiment, we fixed this as resulting in 40p of earnings to each of the
four group members. There is another consequence if the token is allocated to the private account.
For a game with nonlinear payoffs, the distinct numbering of the tokens allow us to specify different
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Figure 1: Screenshot of the allocation panel, used by participants to indicate decisions in the
experiment. Left: The panel at the start of a decision. Right: The panel with an allocation selected.
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values for each token. Tokens were numbered such that tokens with higher numbers had higher
values if allocated to the private account.

The participant allocated a token to the project by clicking on the box to the left of that token.
Similarly, the participant allocated a token to the private account by clicking on the box to the right
of that token. When a participant clicked to allocate token i, the device automatically allocated
all tokens with numbers below i to the project, and all tokens with numbers above i to the private
account.4 Participants were able to adjust their allocations as many times as they wished before
confirming. Colour-coding was used to indicate the currently-selected allocation, as shown in
Figure 1.

Enforcing that the allocation to the project always consists of lower-numbered tokens does
make the decision equivalent to asking how many tokens the participant wanted to allocate to the
project and to the private account. Our design for the choice architecture has several features
conceived with the research question in mind. This design invites the use of marginal reasoning;
the information required to make calculations at the margin is exactly the comparison of the con-
sequences on the left and the right of each token. In particular, this means that computing the
own-earnings-maximising response is straightforward, as it involves only seeking which tokens
would yield a return of greater than 40p if allocated to the private account. This feature suggests
our choice architecture might result in a greater proportion of participants choosing to maximise
their own earnings. However, unlike e.g. Gronberg et al. (2012), who use a different device for
making own-earnings consequences easy to discover, our choice architecture also incorporates re-
minders of the social consequences of allocations to the project. Each consequence in the project
column includes the word “each,” and the symbols of all four group members are displayed atop
the Project column, while only the participant’s symbol appears over their own private account.

Our preference for a graphical device rather than typing in numbers is intended to reduce further
any frictions in indicating decisions. “Accessible” numbers (such as 0, or 5) are observed more
commonly in decisions when input by keyboard versus graphical devices, and, in the case of the
allocation table, it would be easier to type the same number in repeatedly than to type different
numbers for different hypothetical contributions of others group members. Our graphical device
also allows us to present the allocations to the project and to the private account using entirely
parallel language; text-based responses generally force a breaking of symmetry by asking either
for an allocation to the project or an allocation to the private account.

In each game, the Stage 1 unconditional allocation was made first. Figure 2 displays the choice
architecture for the Stage 2 contingency table, which requires the specification of 21 decisions. We
referred to each possible realisation of the average Stage 1 allocation to the project as a scenario.

4Therefore the allocation panel did enforce efficiency in the sense that, if k tokens were allocated to the project,
they were always the k tokens worth the least to the participant in their private account.
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Figure 2: Indication of Stage 2 allocation table decisions. Three scenarios were available on the
screen at a time. Navigation across scenarios was available using tabs at the bottom of the screen.
A panel at the right summarised the allocation decisions made so far.

The allocation panels for three scenarios were available on the screen at any time, with a tabbed
interface available to navigate among scenarios. A panel at the right of the screen summarised the
allocations made by the participant so far. Allocations could be made in any order and changed as
often as the participant liked, before confirming the decisions with the button at the bottom-right
of the screen.

3.4 Experimental sessions

We conducted a total of 8 sessions at the laboratory of the Centre for Behavioural and Experimental
Social Science (CBESS) at University of East Anglia, in April and May, 2016. 148 participants
were recruited from the standing participant pool, maintained using the hRoot system (Bock et al.,
2012). The treatments were presented to subjects in one of four orderings, which differed across
sessions. Games 1 and 2 were always LINEAR and DOMINANT, in either order, and Games 3 and
4 where always COMPLEMENTS and SUBSTITUTES, again in either order. The experiment was
programmed using zTree (Fischbacher, 2007). Sessions lasted on average 75 minutes, including
instructions and control questions, and participants earned on average £23.39 with an inter-quartile
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range of £5.34.5

4 Results

4.1 Behavioural types in the linear game

Our experiment builds on the substantial literature which has used the contingency-choice protocol
in linear VCMs. In our implementation we have developed a new design for the choice architecture
to elicit decisions. A main objective of the design process was to represent the nonlinear payoff
scheme to participants in the simplest possible way, avoiding resorting to mathematical formulas
or calculations to focus on the tradeoff players face between own earnings and group earnings.
This new design also provides a robustness test on contribution behaviour in the linear game.
In particular, during the design process, we were aware of the possibility that the layout of the
financial incentives in the linear game using the explicit labeled-token metaphor might make own-
earnings-maximising behaviour more common, whether through a reduction in confusion or simple
salience considerations.

As such, we begin by comparing our data to previous experiments with the same payoff struc-
ture. Fallucchi et al. (2017) re-analyse the data from six experiments using the two-stage protocol.
They use hierarchical cluster analysis (Lloyd, 1982) to classify participant types based on their
Stage 2 strategies, and find five behaviourally distinct groups. We briefly recap the methodology
before reporting on the results as applied to our dataset.

Each participant’s Stage 2 strategy can be thought of as a point in a 21-dimensional space, with
each dimension corresponding to the contribution to the project for one of the possible realisations
of the average contribution of the other group members. Write the strategy of a participant i as
gi =

(
g

(0)
i , g

(1)
i , . . . , g

(20)
i

)
, where g(k)

i is the contribution of participant i to the project if other
group members contribute on average k tokens to the project.

The distance between the strategies of any two participants i and j is computed using the
Manhattan distance,

d(gi,gj) =
20∑
k=0

∣∣∣g(k)
i − g

(k)
j

∣∣∣ . (2)

Economically, this metric can be interpreted as the expected difference between the Stage 2 con-
tributions of participants i and j, if the average contribution k of other group members is chosen
uniformly at random. Clusters are then formed using Ward’s linkage method (Ward, 1963), which
minimises the within-clusters sum of squares. We use both Caliński-Harabasz criterion (Caliński
and Harabasz, 1974) and the Duda-Hart Je(2)/Je(1) index (Duda and Hart, 1973) to determine

5For comparison, the current living wage in the United Kingdom is £8.25 per hour.
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This paper Fallucchi et al. (2017)
re-analysis

Own-maximisers 31.1% 25.8%
Strong conditional cooperators 28.4% 38.8%
Weak conditional cooperators 25.7% 18.9%

Unconditional contributors 4.0% 4.7%
Mid-range or Various 10.8% 11.8%

Table 1: Summary of type classifications, compared to results in Fallucchi et al. (2017) based on
six previous studies.

Fallucchi et al. (2017)
OWN SCC WCC VAR UNC

OWN 0.18 8.63 3.71 8.62 15.90
This SCC 8.83 0.36 5.12 4.92 7.12
paper WCC 5.17 3.98 1.44 3.52 10.75

MID 9.64 4.60 5.92 1.19 6.27
UNC 17.11 8.54 13.38 8.47 1.99

Table 2: Mean absolute distance of Stage 2 contributions between types in Fallucchi et al. (2017)
and types in this paper.

the number of clusters to produce. In the event the criteria suggest different numbers of clusters,
we choose the larger number of clusters, following the standard practice in applying hierarchical
clustering.

Result 1. Hierarchical cluster analysis divides participants into five behavioural types based on

their Stage 2 strategies in LINEAR. The proportions of types are similar between our data and

data from previously-reported experiments.

Support. For each of the five types identified by clustering, we produce a heatmap of the Stage 2
strategies classified as that type. Let T (i) denote the type to which a participant i is assigned. The
heatmap for a type t is produced by taking the Stage 2 strategies of all participants assigned to that
type, and constructing the set {(k, cik)}i:T (i)=t,k=0,...,20. The frequencies of these ordered pairs are
used to generate the heatmap, with darker shades corresponding to higher frequencies. The modal
behaviour for a given average contribution k of other group members is identifiable by the darkest
cells. The resulting heatmaps are presented in Figure 3, with the results from LINEAR in the left
column, and the corresponding clusters from Fallucchi et al. (2017) in the right column. There is
good behavioural agreement between the clustering generated from LINEAR and that of Fallucchi
et al. (2017) in four of the five groups: own-maximisers, strong conditional cooperators, weak

conditional cooperators, and unconditional contributors. The residual group, called “various” in
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Figure 3: Heatmaps of Stage 2 contribution strategies, by behavioural type. The left column
contains data from LINEAR. The right column contains the data from six previous experiments
re-analysed by Fallucchi et al. (2017).
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Fallucchi et al. (2017), has similar average behaviour in the two datasets, with both involving a
contribution of about one-half the endowment irrespective of the contributions of the other group
members.

Table 2 quantifies the similarity between the clusters in Fallucchi et al. (2017) in the clusters
in our data. Each cell compares the Stage 2 contributions of one type in our data with the Stage 2
contributions of one type in Fallucchi et al. (2017). The entry is the mean absolute difference given
by (2) of the average Stage 2 strategy of each type. The entries on the diagonal are much smaller
than those off the diagonal. This gives a quantitative justification of our mapping between the types
found in our data and those in Fallucchi et al. (2017), and shows that the average behaviour of each
type in our experiment is similar to previous studies.

Table 1 compares the proportion of types produced by the cluster analysis in our study with
the results in (Fallucchi et al., 2017). We observe a slightly higher proportion of own-maximisers
(31.1% versus 25.8%), and slightly more weak conditional cooperators, and slightly fewer strong
conditional cooperators.

We compare the coherence of the clusters using silhouette plots (Rousseeuw, 1987) in Figure 4.
This method assigns to each participant i an index in [−1,+1]. This number compares the average
distance between participant i’s strategy and the strategies of other participants of the same type,
against the average distance to participants who are classified in the “next closest” type. A positive
silhouette index means the participant’s strategy is more similar to the strategies of others of the
same type, whereas a negative silhouette index means the participant’s strategy is more similar to
the strategies of some other type. Participants are grouped by their type classification, and then
sorted in decreasing order of the index to generate the plot. The silhouette indices for participants
in our clusters are almost all positive and larger in magnitude than those in the clusters based on
the previous studies. This indicates the coherence of the clusters identified in our data.

Cluster analysis also draws a distinction between strong conditional cooperators, who match
the average contribution of other group members on a one-for-one basis, and weak conditional
cooperators, who have Stage 2 strategies which are generally increasing, but at a rate of less than
one-for-one. Weak conditional cooperators are heterogeneous, although the silhouette analysis
confirms that they are well-distinguished from strong conditional cooperators on one side and
own-maximisers on the other. This confirms the distinction previously proposed by by Chaudhuri
et al. (2006) and Gächter et al. (2012).

Our Stage 2 differ from the surveyed previous experiments in two other respects. First, among
the participants classified as weak conditional cooperators in previous studies are the so-called
“hump-shaped” or “triangle” contributors, who match contributions roughly one-for-one up to 10,
and then start to decrease contributions as the average contribution of other members increases.
While a clear triangle pattern is evident in the heatmap of weak conditional cooperators derived
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Figure 4: Silhouette plots of type clusters. Left column: our data. Right column: data from
Fallucchi et al. (2017).

from previous studies, no similar pattern is found in our data.6 Second, our residual cluster, which
we label mid-range, is concentrated around contributions near one-half the endowment, whereas
the analogous cluster various derived from previous studies includes contributions which span the
whole of the set of possible contributions.

The Stage 2 strategies of participants classified as either strong or weak conditional cooperators
suggest their Stage 1 contributions to the project depends on their beliefs about how the others in
their group will play the game. The own-maximiser, mid-range, and full contributor types report
Stage 2 strategies in which their intended contributions do not depend much on what others will
do. We can therefore ask whether the Stage 1 decisions in LINEAR are broadly consistent with the
clusters determined by the Stage 2 strategies.

Result 2. Stage 1 contributions differ across the type clusters. In particular, own-maximisers

contribute significantly less than all other types.

Support. The average contribution in Stage 1 within each cluster reflects the differences found
in their Stage 2 behaviour. Own-maximisers have the lowest level of contribution, on average of
0.39 tokens. They are followed by the two types of conditional cooperators, the weak conditional
cooperators with 4.18 tokens, and the strong conditional cooperators with 5.93 tokens on average.
Mid-range types contribute on average 8.31 tokens while the unconditional contributors contribute
12.17 tokens. One-way ANOVA to compare Stage 1 contributions across different clusters finds
a statistically significant difference among the five clusters (p < 0.001).7 The mean contribution
of the own-maximisers is significantly different from all other clusters (all p < 0.001; significant

6Examining the individual Stage 2 strategies in our data likewise confirms an absence of such strategies.
7The non-parametric Kruskall-Wallis test also rejects the hypothesis that mean contributions are the same across

different clusters (p < 0.001).
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Figure 5: Distribution of Stage 1 allocations in LINEAR, grouped by the behavioural type of the
participant’s Stage 2 strategy.

after the Bonferroni correction for multiple comparisons). The contributions of weak and strong
conditional cooperators are not significantly different (p = 0.69).

4.2 Coherence of types across games

We now investigate how informative are the types identified by clustering on Stage 2 strategies
in LINEAR in predicting behaviour in the other three games DOMINANT, SUBSTITUTES, and
COMPLEMENTS. We focus first on own-maximisers, weak conditional cooperators, and strong
conditional cooperators, who together comprise 83.5% of our participants. In Figure 6, we group
participants based on their LINEAR type classification, and produce heatmaps of their Stage 2
behaviour in each of the other three games.

The heatmaps for the group identified as own-maximisers in LINEAR all feature a dark line
corresponding to the contributions which maximise individual earnings in each game. That is,
by far the modal behaviour for these participants is to choose the contributions which maximise
their earnings throughout the experiment. The behaviour of these own-maximisers is therefore
consistent across games.

A parallel picture emerges among participants identified as strong conditional cooperators in
LINEAR, albeit one which demonstrates an interesting level of sophistication. The majority of
strong conditional cooperators match the average contributions of other group members one-for-
one, but only when doing so results in a contribution above the own-earnings-maximising level.
When contemplating low contribution levels by the rest of the group, strong conditional coopera-
tors tend to choose the own-earnings-maximising contribution.
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Figure 6: Heatmaps of Stage 2 strategies for allocations to project, grouped by clustering derived
from Stage 2 strategies in LINEAR.
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Figure 7: Silhouette plots for nonlinear games, using the type clusters derived from Stage 2 strate-
gies in LINEAR.
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The within-group consistency and striking sophistication of the strong conditional cooperators
contrasts with the behaviour of the group identified as weak conditional cooperators in LINEAR.
Weak conditional cooperators in LINEAR continue, on average, to be weakly conditionally coop-
erative in other games, insofar as the average contribution of the group lies at or above the own-
earnings-maximising response. However, the heterogeneity in behaviour of the group of weak con-
ditional cooperators in other games distinguishes them clearly from the groups of own-maximisers
and of strong conditional cooperators. Although a fraction of participants become essentially own-
maximisers in other games, as evidenced by the visibility of the own-earnings-maximising line in
the heatmaps, the heatmaps convey the heterogeneity of this group. Notably, weak conditional co-
operators make contributions below the own-earnings-maximising level far more often than those
who are classified as own-maximisers or strong conditional cooperators.

In Figure 7 we evaluate the coherence of the clusters generated from the Stage 2 contributions
in LINEAR, as applied to the nonlinear games, using silhouette plots. These are generated by taking
the LINEAR clustering, but then computing the silhouette indices using the Stage 2 contributions in
the respective nonlinear game. The salient feature of these plots is that almost all weak conditional
cooperators have negative silhouette indices in the nonlinear games. This means that the Stage 2
contributions of almost all players considered WCCs in LINEAR are closer either to the average
behaviour of own-maximisers or the average behaviour of strong conditional cooperators, than to
the average behaviour of weak conditional cooperators. A majority of own-maximisers and strong
conditional cooperators have positive silhouette indices across the nonlinear games. This out-of-
sample application of the LINEAR typology to the nonlinear games provides strong support that
own-maximisers and strong conditional cooperators are distinct, coherent, and robust types.

The analysis of Figures 6 and 7 preferentially define types based on the Stage 2 contribution
strategies in LINEAR. This is useful in view of the extensive literature which has used the linear
payoff specification in public goods games. Nevertheless, the clustering algorithm can be applied
separately to the Stage 2 contributions of each the three games with nonlinear payoffs, producing
another classification of behaviour based on different data.

We take the 126 participants classified in LINEAR as being own-maximisers, weak conditional
cooperators, or strong conditional cooperators. For each nonlinear game, we cluster those par-
ticipants into three clusters, based only on their Stage 2 strategies in each respective game. If
behavioural types were entirely dependent on the details of the game, there would be no carryover
of behaviour from one game to the next, and we would expect the assignment of participants to
clusters in LINEAR to be independent of the assignment in each other game.

In Table 3 we compare the clustering in LINEAR with the clustering of each nonlinear game.
Let T (G) denote the clusters generated for game G, where formally t ∈ T (G) is a subset of the
participants. Each table on the left side of Table 3 compares the clusters T (G1) and T (G2) for a

19



D1 D2 D3 Total

OWN 33 11 2 46
(25.2) (19.3) (1.5)

SCC 8 33 1 42
(23.0) (17.7) (1.3)

WCC 28 9 1 38
(20.8) (16.0) (1.2)

Total 69 53 4

Fisher’s exact test p < .001

OWN SCC WCC

OWN .564*** .674*** .426***
(.470) (.529) (.529)

SCC .646*** .657***
(.471) (.528)

WCC .563***
(.472)

Overall: .588***
(random baseline .508)

(a) LINEAR and DOMINANT

C1 C2 C3 Total

OWN 37 3 6 46
(25.2) (4.7) (16.1)

SCC 14 1 27 42
(23.0) (4.3) (14.7)

WCC 18 9 11 38
(20.8) (3.9) (13.3)

Total 69 13 44

Fisher’s exact test p < .001

OWN SCC WCC

OWN .661*** .646*** .566
(.429) (.573) (.572)

SCC .513** .650***
(.429) (.572)

WCC .347***
(.429)

Overall: .590***
(random baseline .524)

(b) LINEAR and COMPLEMENTS

S1 S2 S3 Total

OWN 12 28 6 46
(12.8) (18.3) (15.0)

SCC 6 12 24 42
(11.7) (16.7) (13.7)

WCC 17 10 11 38
(10.6) (15.1) (12.4)

Total 35 50 41

Fisher’s exact test p < .001

OWN SCC WCC

OWN .443*** .714*** .685**
(.334) (.664) (.664)

SCC .415*** .695***
(.335) (.664)

WCC .336
(.335)

Overall: .602***
(random baseline .554)

(c) LINEAR and SUBSTITUTES

Table 3: Consistency of clustering between LINEAR and each other game. In the contingency
tables at left, each cell is the number of participants classified in LINEAR to the cluster given by
the row label, and in the other game to the cluster given by the column label. Given in parentheses
is the expected number of participants under the null hypothesis that the clustering is independent
across the games. The tables at the right give the Rand (1971) index for each pair of types. Given in
parentheses is the expected index under independent clustering. * denotes a significant difference
at 10%, ** at 5%, *** at 1%.
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pair of games G1 and G2. For a given pair of types t1 ∈ T (G1) and t2 ∈ T (G2), each cell in a
table gives the number of participants in t1 ∩ t2, that is, the number of participants classified as
type t1 in G1 and type t2 in G2.

Result 3. There is significant correlation of types between LINEAR and each of the three games

with nonlinear payoffs.

Proof. If knowing the type t1 of a participant based on their behaviour in G1 gave no information
about their behaviour in G2 (or vice versa), then the distribution of participants to types in G1

would be independent of that in G2. To test this null hypothesis, we conduct Fisher’s exact test on
the joint distribution of type assignments in LINEAR and each nonlinear game. We reject the null
hypothesis of independence for each pair at the .001 significance level.

To quantify the consistency of classification across games relative to the baseline of random
assignment, we use the agreement measure proposed by Rand (1971). This measure is constructed
by considering each pair of participants i and j. Let ti(G1) and tj(G1) denote the types of these
participants in game G1, and ti(G2) and tj(G2) the types of the participants in game G2. Two
partitions are said to agree on the classification of i and j if either (a) ti(G1) = tj(G1) and ti(G2) =

tj(G2), or (b) ti(G1) 6= tj(G1) and ti(G2) 6= tj(G2). Rand’s index of agreement is given by the
proportion of pairs i and j for which the two clusterings agree. On the right side of Table 3
we report this index comparing LINEAR against each nonlinear game. We also break down this
measure conditional on the types of the participants i and j in LINEAR.

The Rand index is useful in understanding the structure of the correlation in the clustering
across the games. Strong conditional cooperators in LINEAR remain the core of a cluster in each
nonlinear game, forming the majority of clusters D2 in DOMINANT, C3 in COMPLEMENTS, and
S3 in SUBSTITUTES. Conditional on two participants being SCC in LINEAR, there is a 64.6%
chance the participants are classified as the same type in DOMINANT, 51.3% they are the same
type in COMPLEMENTS, and 41.5% they are the same type in SUBSTITUTES. The tables give, in
parentheses, the agreement rate that would be obtained if the types in the two games were inde-
pendently distributed, conditional on the observed number of participants in each cluster.8 These
exceed the random-assignment benchmark by substantial margins. Likewise, own-maximisers in
LINEAR tend to classify into the same cluster in each of the nonlinear games.

The weak conditional cooperators in LINEAR are, in contrast, a less coherent group. In DOMI-
NANT weak conditional cooperators are mainly grouped with own-maximisers. Given a participant
i from OWN and a participant j from WCC, there is only a 42.6% chance they are classified as
different in DOMINANT, which is significantly less than the expected 52.9% under random assign-
ment. In this game the own-maximisers contribute about 7 tokens, irrespective of the behaviour

8That is, under the null hypothesis of Fisher’s exact test.
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of others. Weak conditional cooperators do not distinguish themselves substantially from this be-
haviour. Although LINEAR and DOMINANT have by definition different payoff structures and
therefore caution must be exercised in comparing choices in the strategy spaces of the two games,
the presence of the interior own-earnings-maximising contribution may crowd out some of the
pro-social instinct of the WCCs.

The clustering in SUBSTITUTES assigns two WCCs from LINEAR to the same cluster just about
as often as expected by chance (33.6% in the data versus 33.5% under the random benchmark). In
COMPLEMENTS WCCs from LINEAR are actually considered different more often than random
chance would predict; WCCs are considered similar in COMPLEMENTS only 34.7% of the time
against the benchmark 42.9%.

4.3 Mid-range and high contributors

Only 22 participants are classified in the mid-range or high clusters. These participants do not
show a systematic response to the anticipated contributions of the other members of their group in
LINEAR. The mid-range cluster would include the stereotype strategy of contributing exactly one-
half of one’s endowment irrespective of the actions of others, while the high contributor cluster
would include the strategy of unconditional full contribution, which is the decision that maximises
the group earnings from the player’s endowment.

Figure 8 shows the heatmaps of Stage 2 strategies for the mid-range and high clusters. As
these are based on small numbers of participants, we offer primarily qualitative judgments. The
pattern of Stage 2 contributions among mid-range contributors does not differ noticeably between
LINEAR and DOMINANT. These participants do not respond to the increase in the own-earnings
maximising strategy from 0 tokens to 7 tokens, which is broadly consistent with an account where
mid-range contributors anchor on a 50-50 split of tokens in the strategy space as an appropriate re-
sponse. There is likewise only a weak suggestion of a response to the financial incentives in games
COMPLEMENTS and SUBSTITUTES. The few high contributors in LINEAR likewise contribute
generally high amounts in the other games as well. Notable in the heatmaps for both of these types
is that the number of contributions below the own-earnings response is relatively small.

4.4 Response times to control questions

We have observed that strong conditional cooperators, as a group, adopt behaviour which is con-
sistent across games and displays some sophisticated consideration of the financial incentives of
the game, especially compared to weak conditional cooperators. This is suggestive that strong
conditional cooperators are making a well-informed and conscious decision in forming their Stage
2 strategies.
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Figure 8: Heatmap of Stage 2 strategies for allocation to the project, for mid-range and high
clusters, across games
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Type N Mean SE Quartiles

Own-maximisers 46 106.9 9.9 56 73 150
Strong conditional cooperators 42 110.9 10.6 60 96 151
Weak conditional cooperators 38 142.9 16.8 70 105 165

Mid-range 16 191.9 28.1 94 162 253
High 6 160.7 36.1 81 136 242

Table 4: Time spent by participants answering control questions, by behavioral type. All times in
seconds.

To look for further evidence, we look at the time participants spent reviewing and answering
the battery of comprehension control questions at the end of the instructions. Table 4 reports
descriptive statistics on the distribution of these times, by behavioural type.

Result 4. Strong conditional cooperators are not different from own-maximisers in response time

to control questions. Strong conditional cooperators and own-maximisers take significantly less

time to complete the control questions than other types.

Support. Own-maximisers on average take 106.9 seconds to complete the control questions, and
strong conditional cooperators 110.9 seconds. The lower and upper quartiles of the distribution of
response times are likewise similar between the groups. We cannot reject the null hypothesis of
these distributions being the same. (Mann-Whitney-Wilcoxon test, p-value 0.69; the probability a
randomly chosen SCC’s response time is longer than a randomly chosen OWN’s response time is
.525.)

Comparing the response times of own-maximisers and strong conditional cooperators against
the response times of all other participants, we can reject the null hypothesis these distributions
being the same. (Mann-Whitney-Wilcoxon test, p-value 0.002; the probability a randomly chosen
SCC/OWN’s response time is longer than a randomly chosen response time of another type is
.351.)

There are many factors which might feed into how long it takes a participant to complete
the control questions. A participant could spend a longer time on the control questions because
of one or more incorrect answers, as participants could only continue once they gave a correct
response. Participants of different cognitive abilities might need more or less time to process and
respond to a question. Some participants with long response times may simply be less engaged
with the experimental task.9 However, in order to complete the control questions in a relatively
small length of time, a participant would need to be engaged with the task and provide the correct
responses to questions quickly. So, in contrast to the claim of Burton-Chellew et al. (2016), our

9The distributions of the completion times for all groups have long right tails.
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strong conditional cooperators appear to be as well-engaged and understand the task as well as our
own-maximisers.

5 Discussion

We investigate the robustness of pro-social behaviour in social dilemma games by eliciting the be-
haviour of the same participants across public goods environments with different payoff structures.
Following the literature which seeks to classify participants into discrete behavioural types, we first
show that our protocol replicates the distribution of types found in other studies using the standard
linear VCM payoff scheme. Retaining the same choice architecture but moving to nonlinear payoff
structures, the behavioural type classification from the linear game is a strong predictor of the type
classification in other games.

The consistency of types across related games is interesting on its own, as it suggests that clas-
sifying participants based on their Stage 2 strategies in the conditional choice protocol we use does
capture information about individual differences. More significant, however, is how participants
of each of the various types react to different incentive structures. It has previously been suggested
that conditional cooperators, originally identified as a single behavioural type by e.g. Fischbacher
et al. (2001), actually consists of two distinct groups, which we label strong and weak conditional
cooperators, respectively. Our data extend this distinction; strong conditional cooperators emerge
as a coherent group of sophisticated participants. Weak conditional cooperators, in contrast, are
much more heterogeneous, and also more likely to behave similarly to own-earnings maximisers
in nonlinear games.

Looking at the behaviour of strong conditional cooperators across this family of games rules
out some possible explanations for their behaviour. If strong conditional cooperation were due to
conformity (Bardsley and Sausgruber, 2005), we would expect these players to match the average
contributions of other group members in all games, irrespective of the financial incentives of the
game. However, most strong conditional cooperators respond to the financial incentives, insofar as
they do not choose contributions below the own-earnings-maximising amount. For these players,
if conformity is a consideration, it is not undertaken blindly or naively, as the one-to-one matching
behaviour is primarily observed only when the individual sacrifice is beneficial to the group.

People might be motivated by a “warm glow” (Andreoni, 1990) from the mere act of con-
tributing to the public good. In the linear game, as other group members increase contributions
to the public good, the resulting income effect could result in a warm glow-motivated player to
increase her own contribution in response. However, in DOMINANT and SUBSTITUTES, we would
expect players who valued the act of contribution in its own right to contribute in excess of the
own-earnings-maximising amount even when the contributions of others were low; the majority of
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strong conditional cooperators do not do so.
Strong conditional cooperation in the linear VCM would also be consistent with inequity aver-

sion. (Fehr and Schmidt, 1999) As other players increase contributions from zero, a sufficiently
inequity averse player would experience disutility from contributing zero herself, so she would
contribute to reduce her advantageous inequity. However, in the nonlinear game, contributing the
own-earnings-maximising amount to the project in response to low contributions by others would
accentuate, rather than reduce, advantageous inequity.

Zizzo (2010) cites the two-stage conditional contribution procedure we use as a possible ex-
ample of an experimenter demand effect. The use of the conditional contribution table could
suggest to participants that conditionality is an important consideration in playing the game, and
therefore make participants more likely to choose Stage 2 strategies of the sort we classify as con-
ditionally cooperative. However, because strong conditional cooperators do not, in general, choose
contributions below the own-earnings-maximising amount, strong conditional cooperators are not
following such a suggestion dogmatically.

Based on the re-analysis of Fallucchi et al. (2017) and the data in this paper, about 30% of
participants in experiments report Stage 2 strategies which are classified as strongly conditionally
cooperative. The evidence from our experiment is that a substantial majority of these understand
the financial consequences of their actions, and therefore can be presumed to be making an in-
formed decision to behave pro-socially. When the contingency calls for contributions to the public
good in excess of the amount that would maximise their own earnings, these participants may be
influenced by considerations of conformity or inequity aversion to identify one-for-one matching
as the appropriate strategy, from among the large set of possible ways to be express a pro-social at-
titude. However, our data are not consistent with an account that this mode of pro-social behaviour
is due to confusion, misunderstanding, or a lack of engagement with the experimental task. Rather,
many strong conditional cooperators are expressing a sophisticated response to the social dilemma
of the VCM.
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A Experimental instructions

Welcome!

You are about to participate in an experiment in the economics of decision-making. Various
agencies have provided funds for this research. If you follow the instructions and make appropriate
decisions, you can earn an appreciable amount of money. At the end of today’s session you will be
paid in private and in cash. These instructions are solely for your private information. You are not
allowed to communicate during the experiment. If you have any questions, please raise your hand
and a member of the experimental team will come to you.

Groups and decisions

The participants will be divided into groups of four members. You will not know who is in
each group, nor will other participants know which group you are in. The four members of each
group will be identified by one of the four suits of a standard deck of cards. One member will be
identified by clubs (♣), one by diamonds (♦), one by hearts (♥), and one by spades (♠). Your
member ID (♣) will not change during the experiment. The experiment will consist of 4 decision
rounds. All decisions will be made anonymously.

The decision round

We now describe how each decision round will be conducted. In each decision round, there
is a project, which benefits all members of the group equally. In addition, each member has their
own private account, which benefits that member alone. Each member receives 20 tokens. Each
member will allocate their tokens between the project and their own private account. The tokens
will be numbered from #1 through #20. Each token has two possible values, depending on whether
the token is allocated to the project or to the private account. Information about these values will
be organised for you in a display like this, which we will call an allocation panel.
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For each token, the value in the Project column (on the left) tells you the value of the token if
it is allocated to the project. The value in the Private account column (on the right) tells you the
value of the token if it is allocated to your private account.

Earnings from the project
Each group member will profit equally from the tokens you or any other group member allocate

to the project. In each decision round, each token you or the other group members allocate to the
project will generate an income of 40p to each member of the group. This is indicated in the
allocation panel by the text 40p each in the Project column next to each token. The header on the
Project side includes all four member IDs (♣♦♥♠), indicating that each member of the group will
earn 40p from the token, if that token is allocated to the project.

Your earnings from your private account
You also earn from each token you allocate to your private account. No one except you earns

anything from tokens you allocate to your private account. The header on the Private account side
includes only your member ID (♣), indicating that only you will receive earnings from the token,
if the token is allocated to the private account. The value of each token may be different. In the
example, token #20 is worth £1.00 if allocated to the private account; token #19 is worth 95p,
and so on. The tokens will be sorted in the allocation panel according to their value in the Private
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account column, from lower to higher.
Your total earnings
Your total earnings for a decision round will be the sum of your earnings from your private

account and from the project:
Your total earnings = Earnings from your private account + Earnings from the project

= Earnings from the tokens you allocated to your private account +
40p × total number of tokens allocated to the project by
all members of the group

Example 1. Suppose you allocated 18 tokens (#1 through #18) to the project, and 2 tokens
(#19 through #20) to your private account. Then, your earnings from your private account would
be £1.95, computed by adding up the values in the Private account column for tokens #19 through
#20: £1.00 + 95p = £1.95. Each of the 18 tokens allocated to the project would result in earnings
from the project of 40p × 18 = £6.40 for each member of the group, including yourself.

Example 2. Suppose you allocated 14 tokens (#1 through #14) to the project, and 6 tokens
(#15 through #20) to your private account. Then, your earnings from your private account would
be £5.25, computed as £1.00 + 95p + 90p + 85p + 80p + 75p. Each of the 14 tokens allocated to
the project would result in earnings from the project of 40p × 14 = £5.60 for each member of the
group, including yourself.

Summary
In each decision round, you can derive earnings both from your private account and from the

project. Each token you allocate to the project will result in 40p of earnings to each member of
your group, including yourself. Tokens allocated to your private account result in earnings for you
alone. Each token’s value to you, if it is allocated to your private account, will be indicated on your
allocation panel in each decision round.

Practice questions
Please answer the questions that will shortly appear on your screen. These will help you to

gain an understanding of the calculation of your earnings.
The decision round
There will be four decision rounds. In each round, you will make your allocation decisions on

the screen of the computer in front of you. Recall that you will have 20 tokens at your disposal in
each round. Each of them can be allocated either to the project or to your private account.
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Indicating an allocation
You indicate your allocation decisions using allocation panels. On an allocation panel, you can

indicate your decision in one of two ways:

• If you click on a value in the Project column to the left of a token, then all tokens from
#1 up through that token are coloured yellow. This indicates these tokens are allocated to
the project. Any remaining tokens will be coloured orange; this indicates these tokens are
allocated to your private account.

• If you click on a value in the Private account column to the right of a token, then all tokens
from #20 down through that token are coloured orange. This indicates these tokens are allo-
cated to your private account. Any remaining tokens will be coloured yellow; this indicates
these tokens are allocated to the project.

For example, suppose you click on the value in the Project column to the left of token #6. This
allocates the 6 tokens labeled #1 through #6 to the project; the remaining 14 tokens labeled #7
through #20 are allocated to your private account.

This is how the allocation panel would indicate this allocation. Tokens #1 through #6 are
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coloured yellow, indicating they are allocated to the project; tokens #7 through #20 are coloured
orange, indicating they are allocated to the private account. Each member of the group, including
you, would receive 40p from each of the 6 tokens you allocated to the project. You, and you alone,
will also receive earnings from the 14 tokens allocated to your private account: 35p from token #7,
40p from token #8 etc. You can also set allocations by clicking on the values in the Private account
column. If you click on the value in the Private account column to the right of token #7, then the 14
tokens labeled #7 to #20 are allocated to the private account, and the 6 tokens labeled #1 through
#6 are allocated to the project. You can revise your decision on an allocation panel any number of
times. You confirm the decisions you indicate on allocation panels by clicking the Confirm button,
which will be located at the bottom-right of the screen.

Practice questions
You will now have an opportunity to practice indicating decisions on the allocation panel.

There will be three screens. Each screen will ask you to specify a given allocation of tokens to the
project and the private account.

Determining the result of the decision round
The allocations of each group will be determined in two stages, Stage 1 and Stage 2. The

allocations of three group members will be determined in Stage 1, and the allocation of the fourth
group member will be determined in Stage 2.

Prior to today’s experiment, the following four cards were placed, one each, into four unmarked
white envelopes, which were sealed.

The participant seated at station 4 will now select one of these four envelopes. This white
envelope will only be opened at the end of the experiment, after all decisions have been made.
The card in the selected envelope will indicate which group members will have their allocations
determined in Stage 1, and which member will have their allocation determined in Stage 2. Because
the envelope will not be opened until the end of the experiment, we will ask you to make allocations
for both the case in which your ID (♣) is listed under Stage 1, and in which your ID (♣) is listed
under Stage 2. Once we open the envelope and reveal which IDs are listed under Stage 1 and Stage
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2, the computer will use the decisions that you and the other members of your group indicated to
determine the outcome of the decision round.

If your member ID (♣) is listed under Stage 1 on the selected card, then your Stage 1 decision
will be the one used to determine your allocation. The Stage 1 decision consists simply of deciding
which tokens you allocate to the project, and which to the private account. Here is a sample of what
your screen will show when you make your Stage 1 decision in a typical decision round.

Once all participants have indicated and confirmed their Stage 1 decisions for a decision round,
we will move to Stage 2.

If your member ID (♣) is listed under Stage 2 on the selected card, then your Stage 2 decision
will be the one used to determine your allocation. In the Stage 2 decision, we will ask for your
allocation separately for a number of scenarios. There are 21 scenarios, based on the average
number of tokens allocated to the project by the other three members of your group () in Stage 1:
one scenario in which the average is 0 tokens, one in which it is 1 token, and so on up to 20 tokens.
If the average is not a whole number, it will be rounded to the nearest whole number to determine
the scenario. Your Stage 2 decision consists of making an allocation for each of these possible
scenarios.
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A typical Stage 2 decision screen is shown above. Each allocation panel corresponds to one
scenario. The allocation panels for three scenarios are displayed on screen at one time; this screen
shows the allocation panels for the scenarios in which the average allocation of the other members
(♦♥♠) to the project is 0, 1, or 2 tokens, respectively. To navigate to other scenarios, click the
corresponding scenario numbers in the row of buttons at the bottom of the screen. The table on the
right side of the screen summarises the allocations you have indicated so far for various scenarios.
When you have indicated your allocation for each of the scenarios, click the Confirm button at the
bottom-right of the screen to finalise your decision.

After all participants have made and confirmed their Stage 2 allocations, we will proceed to the
next decision round. At the end of the experiment, we will open the white envelope to reveal which
group members are listed under Stage 1 and which one is under Stage 2. The computer will take
the three allocations to the project of the group members listed under Stage 1, compute the average,
and round it to the nearest whole number. This will determine the scenario which is relevant for
the group member listed under Stage 2. The computer will consult the Stage 2 allocation for that
member for that scenario to determine that member’s allocation.

Examples

We will now go through two hypothetical examples to illustrate how the Stage 1 and Stage
2 decisions made by you and the other members of your group will be used to determine the
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allocations in each decision round.
Example 1. Suppose the card below is the card in the selected white envelope:

This card lists your ID (♣) under Stage 2. The computer will then use the Stage 1 allocations
to the project of the other three group members (♦♥♠); suppose these are 0, 2, and 4 tokens,
respectively. The average allocation of these three group members (♦♥♠) is 2 tokens: 0 + 2 + 4 =
6, which divided by 3 equals 2. This determines the relevant scenario, in which the average Stage
1 allocation of the others is 2 tokens. If you indicated in your Stage 2 decision that in this scenario
you would allocate 1 token to the project, then the total allocation to the project is 0 + 2 + 4 + 1 = 7
tokens. Each group member would therefore earn 40p× 7 = £2.80 from the project. Each member
additionally would receive earnings from tokens allocated to their own private account.

Example 2. Suppose the card below is the card in the selected white envelope:

This card lists your ID (♣) under Stage 1. The computer will then use your Stage 1 allocation;
suppose it was 16. It will also use the Stage 1 allocations of the other two group members (♥♠)
also listed under Stage 1; suppose these were 18 and 20 tokens respectively. The average allocation
of these three group members (♣♥♠) would be 18 tokens: 16 + 18 + 20 = 54, divided by 3 equals
18. This determines the relevant scenario, in which the average Stage 1 allocation is 18 tokens.
Then, the computer would consult the Stage 2 decision of the member whose ID (♦) is listed under
Stage 2 on the card for this scenario. Suppose that in this scenario, this member (♦) indicated that
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they would allocate 3 tokens. Then the total allocation of the group to the project would be 16
+ 18 + 20 + 3 = 57 tokens. Each group member would therefore earn 40p × 57 = £22.80 from
the project. Each member additionally would receive earnings from tokens allocated to their own
private account.

How earnings will be determined for the experiment
One of the four decision rounds will be selected at random to determine the earnings you will

receive from your decisions. Prior to today’s experiment, the numbers 1 through 4 were printed
on separate slips of paper, and placed, one each, into four unmarked brown envelopes, which were
sealed. We will now ask the participant seated at station 3 to select one of these four envelopes.
The number in the selected envelope will determine the decision round used to determine your
earnings for the session. This brown envelope will only be opened at the end of the experiment,
after all decisions have been made.

Beginning the experiment
If you have any questions please raise your hand and an experimenter will come to your desk

to answer.
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A.1 Instructions on Screen for LINEAR

Decision Round #

Project
Each member of the group, including you, will earn 40p for each of the tokens you and the

other members allocate to the project.

Your Private Account
Each token you allocate to your private account earns you £1.00.

Token Your Private Account

#1 £1.00
#2 £1.00
#3 £1.00
#4 £1.00
#5 £1.00
#6 £1.00
#7 £1.00
#8 £1.00
#9 £1.00
#10 £1.00
#11 £1.00
#12 £1.00
#13 £1.00
#14 £1.00
#15 £1.00
#16 £1.00
#17 £1.00
#18 £1.00
#19 £1.00
#20 £1.00
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A.2 Instructions on Screen for DOMINANT

Decision Round #

Project
Each member of the group, including you, will earn 40p for each of the tokens you and the

other members allocate to the project.

Your Private Account
The first token you allocate to your private account earns you £1.15.
The value of each additional token you allocate to your private account decreases by 6p.

Token Your Private Account

#1 £1.15
#2 £1.09
#3 £1.03
#4 97p
#5 91p
#6 85p
#7 79p
#8 73p
#9 67p
#10 61p
#11 55p
#12 49p
#13 43p
#14 37p
#15 31p
#16 25p
#17 19p
#18 13p
#19 7p
#20 1p
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A.3 Instructions on Screen for COMPLEMENTS

Decision Round #

Project
Each member of the group, including you, will earn 40p for each of the tokens you and the

other members allocate to the project.

Your Private Account
Your earnings from the first token you allocate to your private account depends on the average

allocation of other group members (AO) to the project.
If AO is zero, the first token you allocate to your private account earns you £1.03. This amount

increases by 2p for each one-token increase in AO.
The value of each additional token you allocate to your private account decreases by 6p.

Token Your Private Account

#1 £1.30 - 2p x AO
#2 £1.24 - 2p x AO
#3 £1.18 - 2p x AO
#4 £1.12 - 2p x AO
#5 £1.06 - 2p x AO
#6 £1.00 - 2p x AO
#7 94p - 2p x AO
#8 88p - 2p x AO
#9 82p - 2p x AO
#10 76p - 2p x AO
#11 70p - 2p x AO
#12 64p - 2p x AO
#13 58p - 2p x AO
#14 52p - 2p x AO
#15 46p - 2p x AO
#16 40p - 2p x AO
#17 34p - 2p x AO
#18 28p - 2p x AO
#19 22p - 2p x AO
#20 16p - 2p x AO
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A.4 Instructions on Screen for SUBSTITUTES

Decision Round #

Project
Each member of the group, including you, will earn 40p for each of the tokens you and the

other members allocate to the project.

Your Private Account
Your earnings from the first token you allocate to your private account depends on the average

allocation of other group members (AO) to the project.
If AO is zero, the first token you allocate to your private account earns you £1.30. This amount

decreases by 2p for each one-token increase in AO.
The value of each additional token you allocate to your private account decreases by 6p.

Token Your Private Account

#1 £1.03 + 2p x AO
#2 97p + 2p x AO
#3 91p + 2p x AO
#4 85p + 2p x AO
#5 79p + 2p x AO
#6 73p + 2p x AO
#7 67p + 2p x AO
#8 61p + 2p x AO
#9 55p + 2p x AO
#10 49p + 2p x AO
#11 43p + 2p x AO
#12 37p + 2p x AO
#13 31p + 2p x AO
#14 25p + 2p x AO
#15 19p + 2p x AO
#16 13p + 2p x AO
#17 7p + 2p x AO
#18 1p + 2p x AO
#19 -5p + 2p x AO
#20 -11p + 2p x AO
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