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1 Introduction

The theory of mechanism design is devoted to the question of how to render collective

action efficient if the agents involved hold private information—typically about their

valuations of tangible assets. In many economic environments, however, this challenge is

exacerbated by the fact that agents do also hold private information about their (rational

or ex post irrational) assessments of the externalities that others might impose on them.

These externalities can be tangible, for instance due to spillover effects between firms

or local economies, or intangible—if agents derive (dis)utility directly from how tangible

assets are distributed among them.1

This study explores ex post Pareto-efficient (and, thus, ex post budget-balanced),

mechanism design for two agents whose externality assessments and private payoffs are

all subject to asymmetric information. Each agent’s utility is taken as a weighted sum

of her own payoff and her opponent’s payoff, while the real-valued weight on the latter

determines an agent’s externality assessment, her externality type. An agent’s payoff is

additively separable in a numeraire good (money) and a payoff component (subject to the

economic environment under investigation) which is taken affine in her real-valued payoff

type. An agent’s externality type and payoff type are exogenously given, not perfectly

correlated, and private information; types are independent across agents.—The central

question is to what extent collective action can, or must, condition on agents’ externality

assessments in order to be ex post Pareto-efficient and incentivize agents to reveal their

preferences truthfully.

With externalities taken tangible, the model captures bargaining between competing

nations about scarce resources, with each nation having its private expectations about

the benefit from that resource but also having its private expectations about the threat

of the resource when being in the other nation’s hands. Another example are neighbor-

ing municipalities negotiating harmonized public expenditure if there are spillovers from

locally provided public goods.2

1Agents might also derive (dis)utility from—or change their preferences according to—the process
through which final allocations are realized; see, e.g., Bowles and Hwang (2008). This line of reasoning
is beyond the scope of the present study. Here, I take intangible externalities as outcome-dependent,
being determined by agents’ judgments about the final distribution of wealth.

2This scenario has been analyzed by Harstad (2007), under the assumption of commonly known
externalities though.
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With externalities taken intangible, the model captures other-regarding preferences in

the form of altruism, spite, or status. Altruism and spite are often deployed in the range of

family economics. The model captures bargaining problems like inheritance disputes and

divorce battles, given that family members are privately informed about their valuations

of the goods at stake (their payoff types) and about the extent to which they have come

to despise each other (their externality types). On the other hand, empirical studies have

found that many, if not all, people care about their relative standing in society.3 The

model applies, for instance, to bargaining situations the outcomes of which will affect

the income opportunities of bargainers, provided that the respective income expectations

(payoff types) as well as relative standing considerations (externality types) are private

information.

In order to implement ex post Pareto-efficient allocations, a mechanism provides

agents with incentives such that they truthfully reveal their preferences in equilibrium.—

What is the appropriate equilibrium concept if there is asymmetric information about

externality as well as payoff types?—This question is central not only to the design but

also to the applicability of mechanisms, since different equilibrium concepts differ in their

common knowledge assumptions about agents’ information, preferences, and rational-

ity. The aim to successively weaken common knowledge assumptions in game theory is

sometimes referred to as the ‘Wilson doctrine’:

“Game theory has a great advantage in explicitly analyzing the consequences of

trading rules that presumably are really common knowledge; it is deficient to the

extent it assumes other features to be common knowledge, such as one player’s

probability assessment about another’s preferences or information.

I foresee the progress of game theory as depending on successive reductions in

the base of common knowledge required to conduct useful analyses of practical

problems. Only by repeated weakening of common knowledge assumptions will the

theory approximate reality.” (Wilson, 1987)

The equilibrium concept with the weakest information requirement is that of dominant

strategy implementation in the manner of Vickrey (1961), Clarke (1971), and Groves

3For empirical evidence on status considerations see, e.g., Clark, Frijters, and Shields (2008), Heffetz
and Frank (2008), Tran and Zeckhauser (2012), and the survey by Weiss and Fershtman (1998). For a
theoretical foundation of status preferences see, e.g., Bisin and Verdier (1998).
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(1973). Unfortunately, with externalities, whether private information or common knowl-

edge, dominant strategy implementation is typically not feasible. A weaker notion is that

of ex post implementation, which requires that truthful revelation is each agent’s best

strategy in response to each and every realization of her opponents’ (truthfully revealed)

types. Under ex post implementation, knowledge of type distributions is not required.

However, even if externality types are common knowledge, the imposition of budget bal-

ance restricts its applicability immensely.4 The equilibrium concept I deploy is that of

Bayesian implementation, which requires that truthful revelation maximizes each agent’s

von Neumann-Morgenstern (interim) expected utility provided all other agents reveal

their types truthfully.5 As Bayesian implementation collides with the ‘Wilson doctrine’,

I will put emphasis on how the assumption of common knowledge about the distribution

of externality types can (and even must) be avoided.

In the environment under investigation, a mechanism specifies an allocation rule, spec-

ifying collective action based on the agents’ preferences, and a transfer scheme, incentiviz-

ing agents to reveal those preferences. The challenge involved with private information

about externality assessments is the following: Suppose the allocation rule conditions

on externality assessments. Then the transfer scheme must elicit payoff types as well

as externality types. However, through their externality assessments, agents internalize

the distributive effects of the transfer scheme itself. Hence, the mechanism itself might

deliver incentives to misrepresent preferences. Bayesian incentive compatibility demands

counterbalance of these adverse incentives. Requiring budget balance further restricts

the domain of adequate transfer schemes.

I show that the welfare judgment inherent to an allocation rule is decisive for whether

and how that allocation rule can be Bayesian implemented with a budget-balanced mech-

anism. Specifically, I obtain the following results.

By Proposition 2, the renowned ‘expected externality mechanism’ (AGV-mechanism),

due to Arrow (1979) and d’Aspremont and Gérard-Varet (1979), Bayesian implements in

a budget-balanced way the allocation rule that, for each realization of types, maximizes

aggregate private payoffs exclusive of externalities. These allocations are Pareto-efficient

4Bergemann and Morris (2005) show that Bayesian implementable allocation rules can, in many cases,
no longer be ex post implemented when requiring budget balance.

5To be sure, the term type refers to the pair of an agent’s externality and payoff type. Notice that
a property which is possessed by the class of Bayesian implementable allocation rules is necessarily
possessed by allocation rules that are ex post implementable.
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if each agent’s marginal utility from her own payoff exceeds her marginal (dis)utility

from her opponent’s payoff. The AGV-mechanism is externality-robust in the sense that

it requires neither agents nor the mechanism designer to have any knowledge of the

statistical distribution of externality types.

I then ask for conditions that an ex post Pareto-efficient allocation rule must satisfy in

order to be Bayesian implementable with a budget-balanced mechanism. For this purpose,

I introduce the notions of sensitive allocation rules and strong Bayesian implementability.

An allocation rule will be called sensitive if, in the respective economic environment,

it is the unique maximizer of a social-welfare measure which satisfies the Pareto property.

Furthermore, a sensitive allocation rule is required to be non-constant in payoff types

and to be symmetric in the sense that the effect of an increase in one agent’s external-

ity or payoff type on the other agent’s private payoff is qualitatively similar for both

agents. Non-constancy reflects strong, or ‘sensitive’, welfare judgments of the mechanism

designer, as it implies that she is not indifferent to even small changes in payoff types.6

An allocation rule will be called strongly Bayesian implementable if, for any set of

(non-degenerate) type distributions, there exists a mechanism that Bayesian implements

it. That is, strongly Bayesian implementable allocation rules may not condition on the

specifics of type distributions. This requirement accounts for the ‘Wilson doctrine’ in so

far as it avoids making common knowledge assumptions from the outset. By Proposi-

tion 2, the allocation rule associated with externality-ignoring utilitarianism is sensitive

and strongly Bayesian implementable.

I show that the converse of Proposition 2 is also true if one asks for strong Bayesian

implementation of sensitive allocation rules, which yields the following equivalence (The-

orem 1): A sensitive allocation rule can be strongly Bayesian implemented with a budget-

balanced mechanism if and only if it maximizes aggregate private payoffs exclusive of

externalities; I call the welfare judgment inherent to these allocations externality-ignoring

utilitarianism. The respective mechanism takes the form of the AGV-mechanism.

Loosely speaking, a sensitive allocation rule can be strongly Bayesian implemented in a

budget-balanced way if and only if it results from a form of utilitarianism that approves

individual achievements but ignores ‘help’ or ‘harm’ from others. Implementation of

6Examples of sensitive social-welfare measures are given by utilitarian welfare, either inclusive or
exclusive of externalities. When restricting the economic environment to linear utilities and non-negative
externalities, several classical social-welfare measures qualify as sensitive; they are listed in Proposition 1.
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a welfare judgment inconsistent with externality-ignoring utilitarianism violates budget

balance and thus requires either an external source of money or that ‘money is burned’.

The associated costs can be interpreted as the incentive costs of the welfare judgment.

Furthermore, costless implementation of a sensitive allocation rule requires an externality-

robust mechanism; all mechanisms having this property are of AGV-type. That is, the

requirement of externality robustness does not only serve the purpose of satisfying the

‘Wilson doctrine’ but is even necessary from a welfarist point of view.

Finally, I outline the antagonistic roles of welfare judgments and budget balance.

Theorem 2 shows that, even with asymmetric information about externality assessments,

nearly any welfare judgment can be Bayesian implemented if one waives the requirement

of budget balance. On the other hand, with privately observed payoff types but common

knowledge of externality types, nearly any allocation rule can be Bayesian implementable

in a budget-balanced way (Theorem 3). Hence, it is not externality assessments per se

that render welfare judgments critical but rather the asymmetry of information about

them combined with the efficiency request of budget balance.

The paper proceeds as follows. Section 2 reviews the related literature. Section 3

outlines the basic model. Section 4 identifies conditions that are necessary and sufficient

for ex post Pareto-efficient Bayesian implementation; the central result on the allocative

implications of welfare judgments is obtained. Section 5 expands the central result to

social-welfare measures that incorporate the redistributive effects of the transfer scheme

itself. Section 6 interprets results for strategic bargaining under incomplete information.

Section 7 concludes.

2 Related Literature

This study bridges three strands of literature: those on robust implementation, imple-

mentation in the presence of externalities, and the measurement of social welfare.

In order to come by the criticism pointed at unrealistic common knowledge assump-

tions (Wilson, 1987), many studies have characterized conditions under which Bayesian

implementable allocation rules are ex post or even dominant strategy implementable.7

Jehiel et al. (2006) consider a model framework that entails the one presented here, with

7E.g., Mookherjee and Reichelstein (1992), Dasgupta and Maskin (2000), Bergemann and Morris
(2005, 2011), Chung and Ely (2007), Gershkov et al. (2013).
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the exception that agents do not internalize the distributive effects of transfers. They

show that only those allocation rules can be ex post implemented that appoint the very

same allocation for any realization of types.

Several studies have explored ex post or Bayesian implementation under the assump-

tion that externalities are common knowledge.8 The studies closest to the present one

are those of Jehiel and Moldovanu (2001) and Bierbrauer and Netzer (2016).

Jehiel and Moldovanu (2001) investigate the feasibility of ‘efficient’ Bayesian imple-

mentation in the presence of (allocative or informative) externalities.9 In their model,

each agent i is privately informed about her private payoff, exclusive of externalities, and

about the externality she imposes on another agent j. Agent j’s externality type, in the

language of the present study, is assumed common knowledge. The present study expands

the work of Jehiel and Moldovanu (2001) to the extent that it takes the externality of

i on j as a composite of two pieces of private information, one held by i, the other one

held by j. However, in order to expose the critical role of welfare judgments, attention is

restricted to more specific economic environments.

Bierbrauer and Netzer (2016) explore the design of mechanisms for agents who exhibit

intention-based social preferences in the manner of Rabin (1993). In a novel attempt,

they allow for private information about social types and identify sufficient conditions for

externality-robust Bayesian implementation.10 The present study, in a slightly different

setting, supplements their work by asking for necessary and sufficient conditions for

budget-balanced Bayesian implementation.

This study bridges normative and positive theory based on incentive theoretical

grounds. With regard to ‘efficient’ implementation, the mechanism design literature

typically takes a utilitarian view. In the presence of externalities, the allocation rule

is typically taken to maximize aggregate private payoffs inclusive of externalities (e.g.,

Jehiel and Moldovanu, 2001). Theorem 1 provides a positive rationale for the utilitarian

view in mechanism design theory, however complemented with the somewhat surprising

qualification that, if externality assessments are private information, externalities must

8E.g., Jehiel, Moldovanu, and Stacchetti (1996, 1999), Jehiel and Moldovanu (2001), Goeree et al.
(2005), Kucuksenel (2012), Lu (2012), and Tang and Sandholm (2012).

9They refer to an allocation as ‘efficient’ if it maximizes aggregate payoffs inclusive of externalities.
10Bierbrauer et al. (2017) provide empirical evidence for the relevance of ‘social-preference robust’

implementation in the range of bilateral trade as well as income taxation. Bartling and Netzer (2016)
follow a similar line for the design of auctions if bidders are privately informed about their spiteful
preferences.
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be ignored in order to achieve both incentive compatibility and budget balance. Other

foundations of utilitarianism have been provided on axiomatic, or say normative, grounds

(e.g., Harsanyi, 1955, d’Aspremont and Gevers, 1977, and Maskin, 1978) and in the range

of decision-making under ignorance (e.g., Maskin, 1979).

Theorem 1 is bad news for the proponents of non-utilitarian measures of social wel-

fare.11 Examples for alternative concepts are the maximin principle of Rawls (1971), the

CES welfare measures proposed by Arrow (1973), and welfare measures that explicitly

condition on indices of inequality (e.g., on the inequality index of Atkinson, 1970).12

When interpreting agents’ externality assessments as their individual, privately known

preferences for redistribution, Theorem 1 implies that incentive-compatible redistribu-

tive policies (beyond externality-ignoring utilitarianism) come at a price, embodied in

the violation of budget balance.13

More generally, Theorems 1 to 3 suggest that theories of ‘efficient’ implementation

depend critically on their underlying welfare judgments, and their results might not

pertain when introducing asymmetric information about agents’ externality assessments.

This particularly involves theories of optimal taxation based on “social utility weights”.

From another angle, the result contributes to the growing field of behavioral mechanism

design:14 With regard to their externality assessments, agents might not be able to fully

process the information available (e.g., McFadden, 2009). Other agents might believe that

there are externalities even though there are objectively none. Likewise, agents might

be overly optimistic, or pessimistic, about how the well-being of others would affect

themselves (e.g., Hirschman and Rothschild, 1973). It seems plausible in all these cases

that social planners should not condition their policies on such ‘behavioral’ externality

assessments, and that mechanisms designed to implement ‘efficient’ allocations should be

externality-robust.

11For critical reflections of utilitarianism see, e.g., Posner (1979) and Sen (1973, 1979).
12For a discussion of the CES welfare measures see also Sen (1974).
13Saez and Stantcheva (2016), for instance, characterize optimal taxation under non-utilitarian social-

welfare measures—in the (somewhat unrealistic) absence of externalities.
14E.g., Glazer and Rubinstein (1998), Cabrales and Serrano (2011), de Clippel (2014), Bierbrauer and

Netzer (2016), and Bartling and Netzer (2016).
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3 The Model

3.1 The Basic Setup

There is an interval K = [kmin, kmax] of social alternatives, with kmin < kmax, and there

are two agents, indexed by i ∈ {1, 2}. The agent other than i is denoted by −i. From

alternative k ∈ K and a monetary transfer ti ∈ R, agent i gains a private payoff

πi(k, ti | θi) = θivi(k) + hi(k) + ti,

where the functions vi : K → [0,∞) and hi : K → R are twice continuously differentiable

and satisfy ∂2πi(k, ti | θi)/∂k2 < 0 for all i, k, and θi; furthermore, either dvi/dk > 0 for

all k and i, or dvi/dk < 0 for all k and i. Agent i’s payoff type θi is drawn from an interval

Θi = (θmin
i , θmax

i ) ⊂ (0,∞). From the allocation of payoffs, i gains utility

ui(k, ti, t−i, θ−i | θi, δi) = πi(k, ti | θi) + δi · π−i(k, t−i | θ−i),

where i’s externality type δi is drawn from an interval ∆i = (δmin
i , δmax

i ) ⊂ [−1, 1]. Exter-

nality types take absolute values smaller than one, such that each agent’s marginal utility

from her own payoff exceeds her marginal (dis)utility from her opponent’s payoff. The pair

(θi, δi) will be referred to as i’s type. For convenience, define also πi(k | θi) = θivi(k)+hi(k)

and ui(k, θ−i | θi, δi) = πi(k | θi) + δiπ−i(k | θ−i).

3.2 Information and Incentives

The functions {vi, hi} are common knowledge. Payoff types, θi, and externality types,

δi, are private information and are distributed according to continuous density functions

fi : Θi → (0,∞) and gi( · | θi) : ∆i → (0,∞); that is, an agent’s externality type may

correlate with that agent’s payoff type, not perfectly though. Denote by Hi the joint c.d.f.

of i’s type. While types are private information, type distributions, {Hi}, are common

knowledge. H1 and H2 are stochastically independent.
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Denote by Θ and ∆, respectively, the Cartesian products Θ1 ×Θ2 and ∆1 ×∆2, and

let θ = (θ1, θ2) and δ = (δ1, δ2). For a random variable X : Θ × ∆ → R, denote by

Eθi,δi
[
X(θ, δ)

]
the expected value of X for a given type (θ−i, δ−i):

15

A direct revelation mechanism involves the agents in a strategic game of incomplete

information. In this game, agents are asked to report their types truthfully.16 Based

on their reports, a social alternative will be implemented and transfers will be made.

Specifically, the mechanism is defined by an allocation rule k : Θ×∆→ K and a transfer

scheme T = (t1, t2) : Θ×∆→ R2. In what follows, I restrict attention to transfer schemes

that are continuous on the externality-type space ∆.17 An allocation rule k is said to be

Bayesian implementable if there exists a transfer scheme T = (t1, t2) such that truthful

revelation maximizes each agent’s interim expected utility provided the respective other

agent reveals her type truthfully:

(θ1, δ1) ∈ arg max
θ̂1,δ̂1

Eθ2,δ2
[
u1
(
k(θ̂1, δ̂1, θ2, δ2), t1(θ̂1, δ̂1, θ2, δ2), t2(θ̂1, δ̂1, θ2, δ2), θ2

∣∣ θ1, δ1)],
(θ2, δ2) ∈ arg max

θ̂2,δ̂2

Eθ1,δ1
[
u2
(
k(θ1, δ1, θ̂2, δ̂2), t2(θ1, δ1, θ̂2, δ̂2), t1(θ1, δ1, θ̂2, δ̂2), θ1

∣∣ θ2, δ2)].
The mechanism is said to be ex post budget-balanced if transfers satisfy t1 + t2 = 0 for

each realization of types.

3.3 Further Definitions

The following two definitions restrict the set of allocation rules that are to be considered in

the next Sections. For that purpose, denote by sgn : R→ {−1, 0, 1} the sign function.18

Definition 1 (Sensitivity)

Let W : R4 → R be twice partially continuously differentiable, and define V : K → R

by V (k) = W
(
π1(k | θ1) , δ1π2(k | θ2) , π2(k | θ2) , δ2π1(k | θ1)

)
. Then W is said to be a

sensitive social-welfare measure if it has the following properties.

(i) Payoff sensitivity: ∂W (π1, δ1π2, π2, δ2π1)/∂πi > 0 for each i ∈ {1, 2}.
15Likewise, denote by Eθi

[
Y (θ)

]
the expected value of Y : Θ→ R for a given payoff type θ−i.

16By the revelation principle, which applies to the present setup (Myerson, 1979), there is no loss of
generality in identifying message sets, from which agents draw their reports, with agents’ type sets.

17This assumption more restrictive than necessary. However, some assumption about the ‘smoothness’
of T with respect to externality types will be required in the proof of Lemma 1 below.

18For x ∈ R, the sign of x is defined as sgn(x) = 1 if x > 0, sgn(x) = −1 if x < 0, and sgn(0) = 0.
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(ii) Pareto property: If there exist k1, k2 ∈ K and i ∈ {1, 2} such that ui(k1, θ−i | θi, δi) >

ui(k2, θ−i | θi, δi) while u−i(k1, θi | θ−i, δ−i) ≥ u−i(k2, θi | θ−i, δ−i), then V (k1) > V (k2).

(iii) Implication of payoff-type sensitive allocations and symmetric effects: There exists

a partially continuously differentiable allocation rule k∗ : Θ × ∆ → K satisfying

k∗(θ, δ) = arg maxk∈K V (k),

1 = sgn

(
∂v1(k

∗)

∂θ2

)
· sgn

(
∂v2(k

∗)

∂θ1

)
, and(1)

0 = sgn

(
∂π1(k

∗ | θ1)
∂δ2

)
− sgn

(
∂π2(k

∗ | θ2)
∂δ1

)
.(2)

The allocation rule k∗ is said to be sensitive.

Sensitive social-welfare measures account separately for private payoffs, πi(k | θi), and

externalities, δiπ−i(k | θ−i).19 This serves the purpose of clearly isolating the extent to

which Pareto-efficient allocation rules may condition on agents’ externality assessments

if they are to be Bayesian implemented through budget-balanced transfers.

By condition (i), a marginal increase in an agent’s private payoff contributes to social

welfare. Conditions (ii) and (iii), jointly, ensure that the allocation rule unambiguously

specifies some allocation on the ex post Pareto frontier.20 Given that individual utility is

affine in transfers, full ex post Pareto efficiency is realized if transfers are budget-balanced.

Conditions (1) and (2), in essence, require that the effect of an increase in one agent’s

payoff type or externality type on the other agent’s payoff is qualitatively the same across

agents. As the functions vi are assumed to be either strictly increasing or strictly de-

creasing, condition (1) requires in particular that sensitive allocation rules are responsive

to changes in payoff types. By contrast, they are allowed to not respond to changes in

externality types.21

Several well-known social-welfare measures qualify as sensitive.

19This specification is without loss of generality in that it takes payoffs, πi, and externality types,
δi, as independent variables. For example, V (k) = (1 + δ21)π2 + (1 + δ22)π1 can be written as V (k) =

(π1) + (π2) + (δ2π1)
(π1)

(δ2π1) + (δ1π2)
(π2)

(δ1π2).
20Furthermore, condition (iii) requires sensitive social-welfare measures as well as the economic envi-

ronment to allow for interior solutions to maxk∈K V (k). Hence, k∗ satisfies the first- and second-order
conditions dV (k∗(θ, δ))/dk = 0 and d2V (k∗(θ, δ))/dk2 < 0 for all (θ, δ) ∈ Θ×∆.

21Notice that condition (2) precludes the dictatorial social-welfare measure, W = ui(k, θ−i | θi, δi) for
some agent i, from being sensitive, since then ∂πi(k

∗ | θi)/∂δ−i = 0, whereas ∂π−i(k
∗ | θ−i)/∂δi 6= 0.
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Proposition 1 Each of the following social-welfare measures W is sensitive if the eco-

nomic environment is such that W induces a unique partially continuously differentiable

allocation rule k∗(θ, δ) = arg maxk∈K V (k) satisfying ∂k∗/∂θi 6= 0 for all (θ, δ) ∈ Θ×∆

and all i ∈ {1, 2}.

(i) Externality-ignoring utilitarianism: W = π1(k | θ1) + π2(k | θ2).

(ii) Bentham utilitarianism: W = u1(k, θ2 | θ1, δ1) + u2(k, θ1 | θ2, δ2).

If the economic environment is restricted to hi = 0 and ∆i ⊂ (0, 1) for all i ∈ {1, 2}, then

the following social-welfare measures are sensitive.22

(iii) “Social utility weights”, inclusive of externalities:

W = α1u1(k, θ2 | θ1, δ1) + α2u2(k, θ1 | θ2, δ2), with α1, α2 > 0.

(iv) The Nash product, inclusive of externalities:

W = u1(k, θ2 | θ1, δ1) · u2(k, θ1 | θ2, δ2).

(v) CES welfare (Arrow, 1973), inclusive of externalities:

W =
[
[u1(k, θ2 | θ1, δ1)]−ρ + [u2(k, θ1 | θ2, δ2)]−ρ

]− 1
ρ , with ρ ∈ (−1,∞) \ {0}.

Proof. Externality-ignoring utilitarianism will be addressed separately in Proposition 2.

Proofs are straightforward for (ii) and (iii) and are omitted therefore. See the Appendix

for (iv) and (v).

By means of the next definition, I restrict attention to those social-welfare measures

that do not vary with (higher moments of) type distributions and still imply ex post

allocations that are Bayesian implementable, irrespective of type distributions.

Definition 2 (Strong Bayesian Implementability)

An allocation rule k∗ : Θ×∆→ K is said to be strongly Bayesian implementable if it is

Bayesian implementable for any set of (non-degenerate) type distributions, {H1, H2}.

Strong Bayesian implementability does not require the mechanism as a whole to be

independent from type distributions. It rather makes a qualitative distinction between

‘means’ (the transfer scheme) and ‘ends’ (the allocation rule). The welfare judgment

22One can show that the externality-ignoring versions of these welfare measures satisfy conditions (i)
and (iii) of Definition 1 but might yield allocations that are not Pareto-efficient.
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inherent to this concept is that ex post allocations ought not depend on what agents’

types could have been but only on what agents’ types are.23

4 The Incentive Costs of Welfare Judgments

This Section proves the following theorem (employing Propositions 2 to 4) and discusses

it from various angles (through Theorems 2 and 3).

Theorem 1 A sensitive allocation rule k∗ : Θ × ∆ → K is strongly Bayesian imple-

mentable through budget-balanced transfers if and only if it maximizes aggregate private

payoffs exclusive of externalities: k∗(θ, δ) = arg maxk∈K π1(k | θ1)+π2(k | θ2) for all (θ, δ);

in particular, k∗ is independent from externality types: k∗ = k∗(θ).

The budget-balanced transfer schemes T ∗ = (t∗1, t
∗
2) that (ordinarily) Bayesian imple-

ment k∗ are of AGV-type: For reported types (θ̂, δ̂) ∈ Θ×∆, transfers are given by

t∗1(θ̂, δ̂) = Eθ2
[
π2(k

∗(θ̂1, θ2) | θ2)
]
− Eθ1

[
π1(k

∗(θ1, θ̂2) | θ1)
]

+ s(θ̂, δ̂),(3)

t∗2(θ̂, δ̂) = Eθ1
[
π1(k

∗(θ1, θ̂2) | θ1)
]
− Eθ2

[
π2(k

∗(θ̂1, θ2) | θ2)
]
− s(θ̂, δ̂),(4)

where s : Θ×∆→ R must be chosen such that Eθ−i,δ−i [s(θ, δ)] is constant on Θi×∆i for

all i ∈ {1, 2}.24

By Theorem 1, Bayesian implementation of a welfare judgment inconsistent with

externality-ignoring utilitarianism violates budget balance and thus entails incentive

costs.

In the following, I refer to the mechanisms (k∗, T ∗) specified by Theorem 1 as AGV-

type mechanisms (after Arrow, 1979, and d’Aspremont and Gérard-Varet, 1979). Ex

interim, AGV-type mechanisms leave externality assessments strategically inoperative.

If the distribution of externality types is not common knowledge, one can let s = 0.

The sufficient conditions of Theorem 1 are to be addressed first.

Proposition 2 Suppose the allocation rule k∗ : Θ → K is partially continuously differ-

entiable and satisfies k∗(θ) = arg maxk∈K π1(k | θ1) + π2(k | θ2) and ∂k∗/∂θi 6= 0 for all

23An established social-welfare measure that does condition on type distributions is the generalized
Nash product of Harsanyi and Selten (1972).

24Such functions s can be smooth and non-constant; for example, s(θ, δ) = (θ1−Eθ1 [θ1])(θ2−Eθ2 [θ2])+
(δ1 − Eδ1 [δ1])(δ2 − Eδ2 [δ2]).
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θ ∈ Θ. Then k∗ is sensitive and can be strongly Bayesian implemented through AGV-type

transfers.25

Proof. Regarding the sensitivity of k∗, I focus on the Pareto property. Verification of

the remaining properties of Definition 1 is straightforward.

Suppose there exists an allocation k′(θ, δ) that, for some types (θ, δ), Pareto-improves

upon k∗(θ). Since πi(k | θi) is concave, π1(k
′(θ, δ) | θ1) + π2(k

′(θ, δ) | θ2) < π1(k
∗(θ) | θ1) +

π2(k
∗(θ) | θ2). Suppose agent 1 suffers the (weakly) greater loss in private payoffs. Then

the differences di = πi(k
∗(θ) | θi)−πi(k′(θ, δ) | θi) satisfy d1 > 0 and d1 ≥ d2 > −d1. Since

δ1 ∈ (−1, 1),

u1(k
′(θ, δ), θ2 | θ1, δ1)− u1(k∗(θ), θ2 | θ1, δ1) = −(d1 + δ1d2) < 0.

Hence, agent 1 is worse of under k′(θ, δ) than under k∗(θ); a contradiction.26

Under AGV-type mechanisms, which are budget-balanced, and under the assumption

that agent 2 reveals her type (θ2, δ2) truthfully, agent 1 reports (θ̂1, δ̂1) so as to maxi-

mize her interim expected utility. Without loss of generality, normalize s(θ̂, δ̂) = 0. By

equations (3) and (4),

Eθ2,δ2
[
u1( · )

]
= Eθ2

[
π1(k

∗(θ̂1, θ2) | θ1) + π2(k
∗(θ̂1, θ2) | θ2)

]
−(1− δ1)Eθ1,θ2

[
π1(k

∗(θ1, θ2) | θ1)
]
,

where the second term in the last line is independent from θ̂1. If truthfully reporting θ1

is strictly inferior to some report θ̂1 6= θ1, then there must exist some θ2 such that

π1(k
∗(θ̂1, θ2) | θ1) + π2(k

∗(θ̂1, θ2) | θ2) > π1(k
∗(θ1, θ2) | θ1) + π2(k

∗(θ1, θ2) | θ2),

which contradicts the definition of k∗. Hence, agent 1 has no incentive to misreport her

payoff type. Obviously, she has no incentive to misreport her externality type. By sym-

metry, agent 2 can do no better than reporting (θ2, δ2). As the argument holds for any

25That AGV-type mechanisms are Bayesian incentive-compatible for other-regarding, spiteful agents
has been shown earlier by Bartling and Netzer (2016) and Bierbrauer and Netzer (2016).

26This line of reasoning shows also that for “excessive” externalities, |δi| > 1, externality-ignoring
utilitarianism might not yield Pareto-efficient allocations.
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set of type distributions, AGV-type transfers strongly Bayesian implement k∗.

The next two Propositions give proof of the necessary conditions of Theorem 1. They

successively constrain the domain of sensitive allocation rules that are strongly Bayesian

implementable through budget-balanced transfers. A Lemma eases the exposition.

Lemma 1 Suppose the partially continuously differentiable allocation rule k∗ : Θ×∆→

K is strongly Bayesian implementable through budget-balanced transfers. Then k∗ satisfies

(1− δi)
∂vi(k

∗(θ, δ))

∂δi
=

[
dπi(k

∗(θ, δ) | θi)
dk

+
dπ−i(k

∗(θ, δ) | θ−i)
dk

]
∂k∗(θ, δ)

∂θi
(5)

for all (θ, δ) ∈ Θ×∆ and all i ∈ {1, 2}. If k∗ is independent from externality types, k∗ =

k∗(θ), then k∗ is (ordinarily) Bayesian implementable through budget-balanced transfers

only if the transfer to each agent i satisfies

Eθ−i,δ−i
[
ti(θ, δ)

]
= αi + Eθ−i

[
π−i(k

∗(θ) | θ−i)
]

for all (θi, δi) ∈ Θi ×∆i and some constant αi ∈ R.

Proof. See the Appendix.

In light of the second part of the Lemma, Proposition 3 indicates also that the desired

mechanisms leave agents’ externality assessments strategically inoperative.

Proposition 3 A sensitive allocation rule k∗ : Θ × ∆ → K is strongly Bayesian im-

plementable through budget-balanced transfers only if it is independent from externality

types.

Proof. Let k∗ : Θ×∆→ K be the sensitive allocation rule that corresponds to a sensitive

social-welfare measure W : R4 → R, and suppose k∗ is strongly Bayesian implementable

through budget-balanced transfers. It has to be shown that ∂k∗/∂δi = 0.

For x ∈ R4 and j = {1, ..., 4}, write Wj(x) = ∂W (x)/∂xj, and define

Wj = Wj

(
π1(k

∗ | θ1), δ1π2(k∗ | θ2), π2(k∗ | θ2), δ2π1(k∗ | θ1)
)
.(6)
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By Definition 1, k∗ satisfies the first-order condition

0 =
dV (k∗)

dk
= [W1 + δ2W4]

dπ1(k
∗ | θ1)
dk

+ [W3 + δ1W2]
dπ2(k

∗ | θ2)
dk

,(7)

where ∂W/∂π1 = W1 + δ2W4 > 0 and ∂W/∂π2 = W3 + δ1W2 > 0. By Lemma 1, k∗

satisfies also

(1− δ1)
∂v1(k

∗)

∂δ1
=

[
dπ1(k

∗ | θ1)
dk

+
dπ2(k

∗ | θ2)
dk

]
∂k∗

∂θ1
,(8)

(1− δ2)
∂v2(k

∗)

∂δ2
=

[
dπ1(k

∗ | θ1)
dk

+
dπ2(k

∗ | θ2)
dk

]
∂k∗

∂θ2
.(9)

Substituting (7) into (8) and (9) yields

(1− δ1)
∂v1(k

∗)

∂δ1
=

[
1− W1 + δ2W4

W3 + δ1W2

]
dπ1(k

∗ | θ1)
dk

∂k∗

∂θ1
,(10)

(1− δ2)
∂v2(k

∗)

∂δ2
=

[
1− W3 + δ1W2

W1 + δ2W4

]
dπ2(k

∗ | θ2)
dk

∂k∗

∂θ2
.(11)

On the other hand, as ∂k∗/∂θi 6= 0 by Definition 1(iii), identities (8) and (9) imply that

(1− δ1)
∂v1(k

∗)

∂δ1

∂k∗

∂θ2
= (1− δ2)

∂v2(k
∗)

∂δ2

∂k∗

∂θ1
.(12)

As δi < 1 and dvi/dk 6= 0 by assumption, identity (12) implies that ∂k∗/∂δ1 = 0 if and

only if ∂k∗/∂δ2 = 0.

Suppose ∂k∗(θ, δ)/∂δi 6= 0 for some (θ, δ) and all i. Then each of the factors on the

right-hand sides of (10) and (11) is non-zero. In this case, (10) and (11) yield

(W3 + δ1W2)(1− δ1)∂v1(k
∗)

∂δ1
dπ1(k∗ | θ1)

dk
∂k∗

∂θ1

= [(W3 + δ1W2)− (W1 + δ2W4)](13)

= − [(W1 + δ2W4)− (W3 + δ1W2)]

= −
(W1 + δ2W4)(1− δ2)∂v2(k

∗)
∂δ2

dπ2(k∗ | θ2)
dk

∂k∗

∂θ2

.
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Rearranging (13), while writing ∂vi(k
∗)

∂δi
= dvi(k

∗)
dk

∂k∗

∂δi
, yields the identity

(W3 + δ1W2)(1− δ1)
dv1(k

∗)

dk

∂k∗

∂δ1

dπ2(k
∗ | θ2)
dk

∂k∗

∂θ2
(14)

= − (W1 + δ2W4)(1− δ2)
dv2(k

∗)

dk

∂k∗

∂δ2

dπ1(k
∗ | θ1)
dk

∂k∗

∂θ1
.

Since (W1 + δ2W4), (W3 + δ1W2), (1− δi) > 0, applying the sign function to (14) yields

sgn

(
dπ2(k

∗ | θ2)
dk

∂k∗

∂δ1

dv1(k
∗)

dk

∂k∗

∂θ2

)
= − sgn

(
dπ1(k

∗ | θ1)
dk

∂k∗

∂δ2

dv2(k
∗)

dk

∂k∗

∂θ1

)
.(15)

By Definition 1(iii), sgn (∂v1(k
∗)/∂θ2) · sgn (∂v2(k

∗)/∂θ1) = 1, such that (15) implies

sgn

(
∂π2(k

∗ | θ2)
∂δ1

)
= − sgn

(
∂π1(k

∗ | θ1)
∂δ2

)
.(16)

Equation (16) contradicts condition (2) of Definition 1, unless ∂πi(k
∗ | θi)/∂δ−i = 0 for

all i. Suppose ∂π1(k
∗ | θ1)/∂δ2 = 0; then multiplying (10) with ∂k∗(θ, δ)/∂δ2 implies that

(1− δ1)
∂v1(k

∗)

∂δ1

∂k∗(θ, δ)

∂δ2
= 0.(17)

As δi < 1 and dvi/dk 6= 0, (17) yields ∂k∗(θ,δ)
∂δ1

∂k∗(θ,δ)
∂δ2

= 0, such that ∂k∗/∂δi = 0, due to

(12) and the reasoning thereafter. Altogether, ∂k∗/∂δi = 0.

The next Proposition indicates that, from a social point of view, the desired mecha-

nisms treat agents’ private payoffs as perfect substitutes.

Proposition 4 A sensitive allocation rule k∗ : Θ → K, which is independent from

externality types, is strongly Bayesian implementable through budget-balanced transfers

only if k∗(θ) = arg maxk∈K π1(k | θ1) + π2(k | θ2) for all θ ∈ Θ. Any budget-balanced

transfer scheme that (ordinarily) Bayesian implements k∗ is necessarily of AGV-type.

Proof. If k∗ is independent from externality types, identity (5) of Lemma 1 reads

0 =

[
dπi(k

∗(θ) | θi)
dk

+
dπ−i(k

∗(θ) | θ−i)
dk

]
∂k∗(θ)

∂θi
.

By Definition 1(iii), ∂k∗/∂θi 6= 0 for all θi. As πi(k | θi) is concave in the choice of k,

k∗(θ) = arg maxk∈K π1(k | θ1) + π2(k | θ2).
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Suppose there exists a budget-balanced transfer scheme T ∗ = (t∗1, t
∗
2) : Θ × ∆ → R2

that Bayesian implements k∗. Notice that one can always write

t∗1(θ̂, δ̂) = Eθ2
[
π2(k

∗(θ̂1, θ2) | θ2)
]
− Eθ1

[
π1(k

∗(θ1, θ̂2) | θ1)
]

+ s1(θ̂, δ̂),

t∗2(θ̂, δ̂) = Eθ1
[
π1(k

∗(θ1, θ̂2) | θ1)
]
− Eθ2

[
π2(k

∗(θ̂1, θ2) | θ2)
]

+ s2(θ̂, δ̂),

for appropriate functions s1, s2 : Θ×∆→ R satisfying s1 + s2 = 0 on Θ×∆. But then,

for each i ∈ {1, 2} and all (θi, δi) ∈ Θi ×∆i,

Eθ−i,δ−i
[
t∗i (θ, δ)

]
= Eθ−i

[
π−i(k

∗(θ) | θ−i)
]
− Eθi,θ−i

[
πi(k

∗(θ) | θi)
]

+ Eθ−i,δ−i
[
si(θ, δ)

]
.

On the other hand, for k∗ : Θ→ K, Lemma 1 states that

Eθ−i,δ−i
[
t∗i (θ, δ)

]
= αi + Eθ−i

[
π−i(k

∗(θ) | θ−i)
]

for all (θi, δi) ∈ Θi × ∆i and some constant αi ∈ R. Jointly, these identities imply that

Eθ−i,δ−i
[
si(θ, δ)

]
= αi + Eθi,θ−i

[
πi(k

∗(θ) | θi)
]

for all (θi, δi), which is constant on Θi ×∆i.

Hence, (k∗, T ∗) is of AGV-type.

Propositions 2 to 4 give proof of Theorem 1.

The next result shows that the set of Bayesian implementable welfare judgments

expands substantially if one waives the requirement of budget balance.

Theorem 2 If one waives budget balance, then any twice continuously differentiable al-

location rule k∗ : Θ × ∆ → K satisfying minθi,δi
∂
∂θi

Eθ−i,δ−i
[
vi(k

∗(θ, δ))
]
> 0 for all

(θi, δi) ∈ Θi ×∆i and all i ∈ {1, 2} is strongly Bayesian implementable.27

27The sufficient condition is fairly weak; as indicated by condition (36) in the proof of Lemma 1, any
Bayesian implementable allocation rule necessarily satisfies ∂

∂θi
Eθ−i,δ−i

[
vi(k

∗(θ, δ))
]
≥ 0.
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Proof. Be k∗ as described, with βi > 0 for βi = minθi,δi
∂
∂θi

Eθ−i,δ−i
[
vi(k

∗(θ, δ))
]
. For

functions pi : ∆i → R, define transfers T ∗ = (t∗1, t
∗
2) by

t∗i (θ̂, δ̂) = pi(δ̂i)− δ̂i
∂pi(δ̂i)

∂δ̂i
+

∫ θ̂i

θmin
i

Eθ−i,δ−i
[
vi(k

∗(s, θ̂−i, δ̂))
]
ds

+
∂p−i(δ̂−i)

∂δ̂−i
+

∂

∂δ̂−i

∫ θ̂−i

θmin
−i

Eθi,δi
[
v−i(k

∗(θ̂i, s, δ̂))
]
ds

− δ̂i
∂

∂δ̂i

∫ θ̂i

θmin
i

Eθ−i,δ−i
[
vi(k

∗(s, θ̂−i, δ̂))
]
ds

− Eθ−i,δ−i
[
πi(k

∗(θ̂, δ̂) | θ̂i)
]
− Eθi,δi

[
πi(k

∗(θ̂, δ̂) | θ̂i)
]
.

Then T ∗ strongly Bayesian implements k∗ if the functions pi are chosen such that the

following condition holds for all (θi, δi) and all i:

[
∂
∂δi

Eθ−i,δ−i
[
vi(k

∗(θ, δ))
]]2

∂
∂θi

Eθ−i,δ−i
[
vi(k∗(θ, δ))

] <
∂2

∂δ2i

[
pi(δi) +

∫ θi

θmin
i

Eθ−i,δ−i
[
vi(k

∗(s, θ−i, δ))
]
ds

]
.(18)

For example, one can choose pi(δi) = 1
2
ciδ

2
i , with

ci = γi − min
θi,δi

∂2

∂δ2i

∫ θi

θmin
i

Eθ−i,δ−i
[
vi(k

∗(s, θ−i, δ))
]
ds(19)

for some constant γi satisfying βi · γi > maxθi,δi

[
∂
∂δi

Eθ−i,δ−i
[
vi(k

∗(θ, δ))
]]2

.28 For an ex-

tensive proof of this claim as well as a derivation of T ∗, see the Appendix.

The final result of this Section emphasizes the critical role of information about agents’

externality assessments.

Theorem 3 Suppose externality types are common knowledge. Then any differentiable

allocation rule k∗ : Θ×∆→ K satisfying ∂
∂θi

Eθ−i
[
vi(k

∗(θ, δ))
]
≥ 0 for all (θi, δ) ∈ Θi×∆

and all i ∈ {1, 2} is strongly Bayesian implementable through budget-balanced transfers.29

28The latter maximum value exists, since vi and k∗ are continuously differentiable and K is compact.
29As implied by condition (36) in the proof of Lemma 1, the sufficient condition of Theorem 3 is even

necessary to render k∗ (ordinarily) Bayesian incentive compatible.
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Proof. Be k∗ as described. For agents i ∈ {1, 2} of commonly known externality types

δ = (δ1, δ2), define the functions Si : Θ×∆→ R by

Si(θ̂, δ) =

∫ θ̂i

θmin
i

vi(k
∗(s, θ̂−i, δ)) ds− πi(k∗(θ̂, δ) | θ̂i)− δiπ−i(k∗(θ̂, δ) | θ̂−i).

Then the budget-balanced transfer scheme T ∗ = (t∗1, t
∗
2) defined by

t∗1(θ̂, δ) =
1

1− δ1

[
S1(θ̂, δ)− Eθ1

[
S1(θ1, θ̂2, δ)

]]
+

1

1− δ2

[
−S2(θ̂, δ) + Eθ2

[
S2(θ̂1, θ2, δ)

]]
,

t∗2(θ̂, δ) =
1

1− δ1

[
−S1(θ̂, δ) + Eθ1

[
S1(θ1, θ̂2, δ)

]]
+

1

1− δ2

[
S2(θ̂, δ)− Eθ2

[
S2(θ̂1, θ2, δ)

]]
strongly Bayesian implements k∗. For an extensive proof of this claim as well as a deriva-

tion of T ∗, see the Appendix.

By Theorem 3, it is not externality assessments per se that constrains the imple-

mentability of welfare judgments, but rather the asymmetry of information about them.

5 Holistic Social Welfare Measures

Up to this point, I have focused on the welfare judgment inherent to the allocation rule.

How does the result of Theorem 1 expand to welfare judgments that are holistic in the

sense that they incorporate the distributive effects of the transfer scheme?

To answer this question, consider a differentiable social-welfare measure W : R4 → R,

and define V : K × R2 → R by

V (k, t1, t2) = W
(
π1(k, t1 | θ1) , δ1π2(k, t2 | θ2) , π2(k, t2 | θ2) , δ2π1(k, t1 | θ1)

)
.

Suppose W is an ex post social-welfare measure in that it is invariant to changes in type

distributions. Assume also that W is payoff-sensitive in that it satisfies

∂W

∂π1
= W1 + δ2W4 > 0 and

∂W

∂π2
= W3 + δ1W2 > 0.(20)
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The social-choice rule (k∗, t∗1, t
∗
2), with allocation rule k∗ : Θ × ∆ → K and transfer

scheme (t∗1, t
∗
2) : Θ×∆→ R2, is budget-balanced and maximizes V if and only if t∗2 = −t∗1

and (k∗, t∗1) = arg max(k,t1)∈K×R V (k, t1,−t1). When assuming that W and the economic

environment allow for an interior solution, (k∗, t∗1) satisfies the first-order conditions

0 =
∂V (k∗, t∗1,−t∗1)

∂k
= [W1 + δ2W4]

dπ1(k
∗ | θ1)
dk

+ [W3 + δ1W2]
dπ2(k

∗ | θ2)
dk

,(21)

0 =
∂V (k∗, t∗1,−t∗1)

∂t1
= [W1 + δ2W4]− [W3 + δ1W2].(22)

Jointly, conditions (20), (21), and (22) imply that the socially efficient allocation rule

is consistent with externality-ignoring utilitarianism: k∗(θ, δ) = arg maxk∈K π1(k | θ1) +

π2(k | θ2). In other words, under holistic social-welfare measures, social choice differs

merely in the extent of redistributive taxation. The problem thus reduces to the ques-

tion: Which welfare judgments yield redistributive tax tariffs that are Bayesian incentive-

compatible?

By Theorem 1, the socially efficient allocation rule k∗ can be Bayesian implemented

through budget-balanced transfers if and only if transfers are of AGV-type. As AGV-

type transfers vary with changes in (payoff-)type distributions, the ex post social-welfare

measure W must be invariant to changes in transfers. That is, agents’ private payoffs

must be perfect substitutes from a social planner’s point of view. This proves the following

theorem.

Theorem 4 A budget-balanced social-choice rule that is interior solution to the maxi-

mization of a differentiable, payoff-sensitive ex post social-welfare measure W is Bayesian

incentive-compatible if and only if W is consistent with externality-ignoring utilitarian-

ism. The respective mechanism is of AGV-type.

Under holistic social-welfare measures, too, incentives must be externality-robust. The

assumptions of Theorem 4 apply in particular to the measures listed in Proposition 1.

A final remark can be made on Rawlsian justice (Rawls, 1971). While the non-

differentiable Rawlsian maximin welfare function does not meet with the requirements of

the above analyses, Theorem 1 still proves useful to obtain the following result.

Proposition 5 A budget-balanced social-choice rule satisfying Rawls’ maximin principle,

inclusive or exclusive of externalities, is not Bayesian incentive-compatible.
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Proof. Consider the maximin principle inclusive of externalities and define the budget-

balanced social-choice rule (k∗, t∗,−t∗) through

(k∗, t∗) = arg max
(k,t)∈K×R

min{π1(k, t | θ1) + δ1π2(k,−t | θ2) ; π2(k,−t | θ2) + δ2π1(k, t | θ1)}.

As individual utility is affine in transfers, t∗ must equalize utilities:

π1(k
∗ | θ1) + δ1π2(k

∗ | θ2) + (1− δ1)t∗ = π2(k
∗ | θ2) + δ2π1(k

∗ | θ1)− (1− δ2)t∗.

Therefore, t∗ = 1−δ1
2−δ1−δ2π2(k

∗ | θ2)− 1−δ2
2−δ1−δ2π1(k

∗ | θ1), and utilities are given by

ui =
1− δ1δ2

2− δ1 − δ2
[π1(k

∗ | θ1) + π2(k
∗ | θ2)] .

Hence, k∗ = arg maxk∈K π1(k | θ1)+π2(k | θ2), since δi ∈ (−1, 1). By Theorem 1, transfers

must be of AGV-type in order to Bayesian implement k∗. As t∗ is not of AGV-type, the

social-choice rule (k∗, t∗,−t∗) is not Bayesian incentive-compatible.

When letting δi = 0 in the above line of reasoning, the proof is obtained for the

maximin principle exclusive of externalities.

6 Bargaining with Side-Payments

This Section applies the above results to the following question: How, by what means and

what ends, do two agents come to an agreement upon the division of a given ‘pie’ which

is currently owned by neither of them? With ‘means’ I refer to the bargaining procedure,

with ‘ends’ to those allocations that are feasible under that procedure. In particular,

how are means and ends restricted if agents are privately informed about how they value

shares of pie as well as how they assess the externalities, tangible or intangible, that they

might impose on each other?

The bargaining literature can be broadly separated into two strands. The ‘means’-

strand, initiated by Rubinstein (1982), starts out from specific bargaining procedures and

takes ends as equilibrium outcomes of the respective non-cooperative games.30 The ‘ends’-

strand, initiated earlier by Nash (1950), is often referred to as “axiomatic bargaining”

30See Ausubel, Cramton, and Deneckere (2002) for a survey on non-cooperative bargaining under
incomplete information.
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and asks how sharing rules, or bargaining solutions, are restricted, if not determined,

by collections of reasonable, pre-specified properties.31 Naturally, these properties are

preference-contingent, which makes preference revelation a critical issue.

In the following, I discuss the bargaining problem from a mechanism design per-

spective, for “this allows us to identify properties shared by all Bayesian equilibria of

any bargaining game” (Ausubel, Cramton, and Deneckere, 2002). I ask which bargain-

ing solutions are strongly Bayesian implementable if utility is transferable by means of

budget-balanced side-payments between agents.32

Consider two agents, 1 and 2, who bargain over the division of a pie of size 1. Specify

the model framework of Section 3 by letting v1(k) = v(k) and v2(k) = v(1 − k), where

v : [0, 1] → [0, 1] is twice continuously differentiable and satisfies v(0) = 0, v(1) = 1,

v′ > 0, and v′′ < 0. Let hi = 0 for all i. From their shares k and 1− k, respectively, and

transfers t1 and t2, agents 1 and 2 draw ex post utilities

u1(k, t1, t2) =
[
θ1v(k) + t1

]
+ δ1 ·

[
θ2v(1− k) + t2

]
,

u2(k, t1, t2) =
[
θ2v(1− k) + t2

]
+ δ2 ·

[
θ1v(k) + t1

]
.

By Theorem 1, the only sensitive bargaining solution k : Θ × ∆ → [0, 1] that can

be strongly Bayesian implemented through budget-balanced transfers is the one associ-

ated with externality-ignoring utilitarianism: k∗(θ) = arg maxk∈[0,1] θ1v(k) + θ2v(1 − k).

Transfers are necessarily of AGV-type: If agents 1 and 2 claim to be of types (θ̂1, δ̂1) and

(θ̂2, δ̂2), transfers are given by

t1(θ̂, δ̂) = Eθ2
[
θ2v(1− k∗(θ̂1, θ2))

]
− Eθ1

[
θ1v(k∗(θ1, θ̂2))

]
+ s(θ̂, δ̂),

t2(θ̂, δ̂) = Eθ1
[
θ1v(k∗(θ1, θ̂2))

]
− Eθ2

[
θ2v(1− k∗(θ̂1, θ2))

]
− s(θ̂, δ̂),

where s must be chosen such that Eθ−i,δ−i [s(θ, δ)] is constant on Θi ×∆i for each i, such

that externality assessments are strategically inoperative. That is, bargaining must focus

on private payoffs, irrespective of externalities. When letting s = 0, as agents’ externality

assessments might not be common knowledge, agents make mutual concessions amounting

to the expected externalities they impose on each other under the bargaining solution k∗.

31See Thomson (1994) for a survey.
32The results are also informative for “pure” bargaining (i.e., if utility is not transferable), since side-

payments could be zero if the bargaining solution was incentive-compatible on its own.
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The necessity of externality robustness seems particularly plausible in the range of

conflict resolution. An arbitrator, seeking to resolve dispute between hostile parties,

should rather claim “Let’s focus on the issue!” than care about who dislikes whom how

much (and is thus more or less spiteful).

The results of the preceding Sections preclude the most prominent solutions to ax-

iomatic bargaining from being strongly Bayesian implemented without incentive costs.

At best, they could be Bayesian implemented through budget-balanced transfers only for

very specific type distributions.

Proposition 6 The bargaining solutions of Nash (1950), Kalai (1977), and Kalai and

Smorodinsky (1975), all of these either externality-sensitive or externality-ignoring, can-

not be strongly Bayesian implemented through budget-balanced transfers.33

Proof. The bargaining solutions under consideration each assume that agents would

end up with an inferior allocation if they did not come to a mutual agreement upon

pie-division. For the present purpose, it suffices to assume that this “threat point” yields

both agents a zero-payoff: πi = 0.

The externality-sensitive Nash solution is given by

k∗(θ, δ) = arg max
k∈[0,1]

[
θ1v(k) + δ1θ2v(1− k)

]
·
[
θ2v(1− k) + δ2θ1v(k)

]
.(23)

By Proposition 1(iv) and Theorem 1, the Nash solution is not strongly Bayesian imple-

mentable through budget-balanced transfers.

The externality-sensitive Kalai solution requires, in the manner of Rawls (1971), to

maximize the minimum of agents’ ex post utilities. This is equivalent to k∗ = k∗(θ, δ)

equalizing utilities, such that34

0 = θ2(1− δ1)v(1− k∗)− θ1(1− δ2)v(k∗) = F (k∗, θ, δ).(24)

33By Proposition 1(iv) and Theorem 3, the opposite implication would hold for the Nash solution
if externality types were common knowledge. The same is true for the Kalai-Smorodinsky solution if

∆i ⊂ (0,
θmin
i

θmax
−i

) for all i; this is indicated by Theorem 3 and identity (63) in the Appendix. It is also

shown in the Appendix that the Kalai solution satisfies ∂k∗/∂θ1 < 0 and thereby violates the necessary
condition for Bayesian implementability, ∂

∂θi
Eθ−i

[
vi(k

∗(θ, δ))
]
≥ 0; that is, the Kalai solution is not

Bayesian implementable even if externality types are common knowledge.
34Due to the assumptions on v and Θ×∆, a solution to (24) always exists.
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The externality-sensitive Kalai-Smorodinsky solution requires k∗ to equalize the ratio of

agents’ ex post utilities and the ratio of agents’ maximum potential gains: u1(k∗)
u2(k∗)

= u1(1)
u2(0)

,

where ui(k) = θivi(k) + δiθ−iv−i(k). This is equivalent to k∗ satisfying35

0 = θ2(θ1 − δ1θ2)v(1− k∗)− θ1(θ2 − δ2θ1)v(k∗) = G(k∗, θ, δ).(25)

Condition (5) of Lemma 1 implies in particular that a partially differentiable bargain-

ing solution k∗ that does not maximize aggregate private payoffs is strongly Bayesian im-

plementable through budget-balanced transfers only if the following holds for all (θ, δ):36

sgn

(
∂k∗

∂θ1

∂k∗

∂θ2

)
= − sgn

(
∂k∗

∂δ1

∂k∗

∂δ2

)
.(26)

It will be shown in the Appendix that the bargaining solutions (24) and (25) each satisfy

sgn(∂k
∗

∂θ1
∂k∗

∂θ2
) = −1 = sgn(∂k

∗

∂δ1
∂k∗

∂δ2
) and thereby violate condition (26).

The respective externality-ignoring versions of the above bargaining solutions are

obtained when letting δi = 0 in (23) to (25). These solutions obviously violate condition

(26), since then ∂k∗

∂δi
= 0, whereas ∂k∗

∂θi
6= 0.

7 Conclusion

I have presented an incentive theory of normative principles. For this purpose, I have

explored mechanism design for agents whose assessments of (in)tangible externalities and

private payoffs are all subject to asymmetric information.

Under reasonable assumptions, Pareto-efficient allocations are Bayesian implementable

through budget-balanced transfers if and only if the normative principle underlying the

choice of allocations is that of externality-ignoring utilitarianism, which requires to max-

imize aggregate private payoffs exclusive of externalities.

Intangible externalities may be associated with altruism, spite, or the quest for status.

In order to attain allocative efficiency, social planners must ignore such other-regarding

35Condition (25) is well-defined on Θ ×∆ if and only if δmax
i ≤ θmin

i

θmax
−i

for all i: A solution k∗ exists if

and only if either (θ1−δ1θ2), (θ2−δ2θ1) ≥ 0, or (θ1−δ1θ2), (θ2−δ2θ1) < 0; however, the latter condition
would imply that (1− δ1)θ2 + (1− δ2)θ1 < 0, which contradicts the assumptions on Θ×∆.

36To be sure, multiplying condition (5) in the version of i = 1 with (5) in the version of i = 2 and apply-

ing the sign function to the resulting identity yields the condition sgn
(
∂k∗

∂θ1
∂k∗

∂θ2

)
= sgn

(
∂v1(k

∗)
∂δ1

∂v2(k
∗)

∂δ2

)
which, in the present context, is equivalent to (26).
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preferences. In the range of conflict resolution, this insight provides a rationale for the

common-sense approach many people would adopt when arbitrating between conflicting

parties: to not condition the arbitration process or final resolution on the extent to which

the opponents despise each other but to rather “focus on the issue” and base arbitration

solely on how it would affect the opponents’ material well-being. One may think of how

judges approach the resolution of divorce battles, how a mother tends to resolve animosity

between her children, or how third-party diplomats try to conciliate rival tribes or nations.

When interpreting intangible externalities as people’s distributive preferences, the

result suggests that public economic policies dedicated to maximize a social-welfare mea-

sure inconsistent with externality-ignoring utilitarianism do either provide people with

adverse incentives (e.g., to reduce their labor supply beyond the efficient level) or are not

budget-balanced, leading either to a waste of money or an increase in public debt.

The Pareto-efficient, budget-balanced mechanism corresponding to externality-ignoring

utilitarianism necessarily takes the form of the renowned AGV-mechanism. This mech-

anism is externality-robust in that it leaves agents’ externality assessments strategically

inoperative—and even allows to ignore them completely. Externality robustness thus

turns out to be more than just a desirable property in order to avoid unrealistic common

knowledge assumptions (about type distributions), as urged by Wilson (1987). External-

ity robustness is actually necessary from an incentive compatibility and allocative point

of view.

Appendix

Proof of Proposition 1(iv) and (v)

Suppose in the following that hi = 0 and ∆i ⊂ (0, 1) for all i. Obviously, the social-

welfare measures (iv) and (v) satisfy payoff sensitivity and the Pareto property. In order

to verify identities (1) and (2), ease notation by letting πi = πi(k | θi) and vi = vi(k).

Proof of Proposition 1(iv)

Let V (k) = (π1 + δ1π2)(π2 + δ2π1). By assumption, k∗ satisfies the first-order condition

0 =
dV (k∗)

dk
=

(
dπ1
dk

+ δ1
dπ2
dk

)
(π2 + δ2π1) +

(
dπ2
dk

+ δ2
dπ1
dk

)
(π1 + δ1π2) .(27)
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Define x1 = π1 + δ1π2 and x2 = π2 + δ2π1, and notice that xi > 0. Then (27) can be

rewritten so as to obtain

0 = (x1 + δ1x2)
dπ2
dk

+ (x2 + δ2x1)
dπ1
dk

,(28)

where x1 + δ1x2 > 0 and x2 + δ2x1 > 0. Implicit differentiation of (27) with respect to θ1

yields ∂k∗/∂θ1 = −X1/[d
2V (k∗)/dk2], where

X1 = x2
dv1
dk

+ δ2v1

(
dπ1
dk

+ δ1
dπ2
dk

)
+ δ2x1

dv1
dk

+ v1

(
dπ2
dk

+ δ2
dπ1
dk

)
.

Since d2V (k∗)/dk2 < 0 by the second-order condition, sgn(∂k∗/∂θ1) = sgn(X1). Since

hi = 0, one can make use of the identities v1
dπ1
dk

= π1
dv1
dk

and (28) to rewrite X1 as

X1 = (x2 + δ2x1)
dv1
dk

+ v1

[
2δ2

dπ1
dk

+ (1 + δ1δ2)
dπ2
dk

]
= (x2 + δ2x1)

dv1
dk

+ v1
dπ1
dk

[
2δ2 − (1 + δ1δ2)

(x2 + δ2x1)

(x1 + δ1x2)

]
=

dv1
dk

Y1
(x1 + δ1x2)

,

where Y1 = [(x1 + δ1x2)(x2 + δ2x1) + π1(1− δ1δ2)(δ2x1 − x2)]. As δi ∈ (0, 1) and πi, xi >

0, letting δi = 0 yields the lower bound Y1 > x1x2 +π1(−x2) = (x1−π1)x2 = δ1π2x2 > 0.

Hence, sgn(∂k∗/∂θ1) = sgn(X1) = sgn(dv1/dk), while, by assumption, sgn(∂k∗/∂θi) 6=

0 and sgn(dvi/dk) 6= 0. Hence, 1 = sgn2(∂k∗/∂θ1) = sgn(dv1/dk) sgn(∂k∗/∂θi) =

sgn(∂v1/∂θ1). By symmetry, 1 = sgn(∂v2/∂θ2). Hence, 1 = sgn(∂v1/∂θ1 · ∂v2/∂θ2) =

sgn(∂v1/∂θ2 · ∂v2/∂θ1) = sgn(∂v1/∂θ2) sgn(∂v2/∂θ1), as required.

On the other hand, implicit differentiation of (27) with respect to δ1 yields ∂k∗/∂δ1 =

−Z1/[d
2V (k∗)/dk2], where

Z1 = x2
dπ2
dk

+ π2

(
dπ2
dk

+ δ2
dπ1
dk

)
.

Since d2V (k∗)/dk2 < 0 by the second-order condition, sgn(∂k∗/∂δ1) = sgn(Z1). By

making use of (28), Z1 can be written as

Z1 =
dπ2
dk

[
x2 + π2 − δ2π2

(x1 + δ1x2)

(x2 + δ2x1)

]
= x2

dπ2
dk

[
1 + π2

(1− δ1δ2)
(x2 + δ2x1)

]
.
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Hence, sgn(∂k∗/∂δ1) = sgn(Z1) = sgn(π2/dk), such that

sgn

(
∂π2
∂δ1

)
= sgn

(
dπ2
dk

)
sgn

(
dk∗

∂δ1

)
= sgn2

(
dπ2
dk

)
∈ {0, 1}.

By symmetry, sgn(∂π1/∂δ2) = sgn2(dπ1/dk) ∈ {0, 1}. As x1+δ1x2 > 0 and x2+δ2x1 > 0,

condition (27) implies that dπ1/dk = 0 if and only if dπ2/dk = 0. Hence, as required,

sgn(∂π1/∂δ2) = sgn(∂π2/∂δ1). Altogether, W is sensitive.

Proof of Proposition 1(v)

Let V (k) = [(π1 + δ1π2)
−ρ + (π2 + δ2π1)

−ρ]
− 1
ρ , with ρ ∈ (−1,∞) \ {0}. By assumption,

k∗ satisfies the first-order condition

0 =
dV (k∗)

dk
=

[
V (k∗)

]1+ρ[
(π1 + δ1π2)

−ρ−1
(
dπ1
dk

+ δ1
dπ2
dk

)
(29)

+ (π2 + δ2π1)
−ρ−1

(
dπ2
dk

+ δ2
dπ1
dk

)]
.

Define x1 = π1 + δ1π2 and x2 = π2 + δ2π1, and notice that xi > 0. By (29),

0 =
(
x−ρ−11 + δ2x

−ρ−1
2

) dπ1
dk

+
(
x−ρ−12 + δ1x

−ρ−1
1

) dπ2
dk

,(30)

where x−ρ−11 + δ2x
−ρ−1
2 > 0 and x−ρ−12 + δ1x

−ρ−1
1 > 0. Implicit differentiation of (29) with

respect to θ1 yields ∂k∗/∂θ1 = −X1[V (k∗)]1+ρ/[d2V (k∗)/dk2], where

X1 =
(
x−ρ−11 + δ2x

−ρ−1
2

) dv1
dk
− (1 + ρ)x−ρ−21 v1

(
dπ1
dk

+ δ1
dπ2
dk

)
−(1 + ρ)x−ρ−22 δ2v1

(
dπ2
dk

+ δ2
dπ1
dk

)
.

Since d2V (k∗)/dk2 < 0 by the second-order condition, sgn(∂k∗/∂θ1) = sgn(X1). Since

hi = 0, one can make use of the identities v1
dπ1
dk

= π1
dv1
dk

and (30) to rewrite X1 as

X1 =
dv1
dk

Y1

x−ρ−12 + δ1x
−ρ−1
1

, where

Y1 =
(
x−ρ−11 + δ2x

−ρ−1
2

) (
x−ρ−12 + δ1x

−ρ−1
1

)
+ (1 + ρ)(1− δ1δ2)x−ρ−21 x−ρ−22 (δ2x1 − x2)π1.
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Hence, sgn(∂k∗/∂θ1) = sgn(dv1/dk) sgn(Y1). By exchanging the roles of 1 and 2, one

obtains sgn(∂k∗/∂θ2) = sgn(dv2/dk) sgn(Y2), where Y2 is defined as

Y2 =
(
x−ρ−11 + δ2x

−ρ−1
2

) (
x−ρ−12 + δ1x

−ρ−1
1

)
+ (1 + ρ)(1− δ1δ2)x−ρ−21 x−ρ−22 (δ1x2 − x1)π2.

Since (δ2x1−x2)π1 = −(1−δ1δ2)π1π2 = (δ1x2−x1)π2, one observes that Y1 = Y2. Hence,

as required,

1 = sgn2

(
∂k∗

∂θ1

)
sgn2

(
∂k∗

∂θ2

)
(31)

= sgn

(
∂k∗

∂θ1

)
sgn

(
dv1
dk

)
sgn (Y1) sgn

(
∂k∗

∂θ2

)
sgn

(
dv2
dk

)
sgn (Y2)

= sgn

(
∂v1
∂θ2

)
sgn

(
∂v2
∂θ1

)
,

where the first equality in (31) holds due to the assumption that ∂k∗/∂θi 6= 0 for all i.

On the other hand, implicit differentiation of (29) with respect to δ1 yields ∂k∗/∂δ1 =

−Z1[V (k∗)]1+ρ/[d2V (k∗)/dk2], where

Z1 = x−ρ−21

[
x1
dπ2
dk
− π2(1 + ρ)

(
dπ1
dk

+ δ1
dπ2
dk

)]
.

Since d2V (k∗)/dk2 < 0 by the second-order condition, sgn(∂k∗/∂δ1) = sgn(Z1). By

making use of (30), Z1 can be written as

Z1 = x−ρ−21

dπ2
dk

[
x1 − π2(1 + ρ)

(
δ1 −

x−ρ−12 + δ1x
−ρ−1
1

x−ρ−11 + δ2x
−ρ−1
2

)]
= x−ρ−21

dπ2
dk

[
x1 + π2(1 + ρ)(1− δ1δ2)

x−ρ−12

x−ρ−11 + δ2x
−ρ−1
2

]
.

Hence, sgn(∂k∗/∂δ1) = sgn(Z1) = sgn(π2/dk), such that

sgn

(
∂π2
∂δ1

)
= sgn

(
dπ2
dk

)
sgn

(
dk∗

∂δ1

)
= sgn2

(
dπ2
dk

)
∈ {0, 1}.

By symmetry, sgn(∂π1/∂δ2) = sgn2(dπ1/dk) ∈ {0, 1}. Since x−ρ−11 + δ2x
−ρ−1
2 > 0 and

x−ρ−12 + δ1x
−ρ−1
1 > 0, identity (30) implies that dπ1/dk = 0 if and only if dπ2/dk = 0.

Hence, as required, sgn(∂π1/∂δ2) = sgn(∂π2/∂δ1). Altogether, W is sensitive.
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Proof of Lemma 1

Suppose the partially continuously differentiable allocation rule k∗ : Θ × ∆ → R can

be strongly Bayesian implemented with the ex post budget-balanced transfer scheme

T = (t1, t2) : Θ×∆→ R2. Define

v̄i(θ̂i, δ̂i) = Eθ−i,δ−i
[
vi(k

∗(θ̂i, δ̂i, θ−i, δ−i))
]
,

h̄i(θ̂i, δ̂i) = Eθ−i,δ−i
[
hi(k

∗(θ̂i, δ̂i, θ−i, δ−i))
]
,

π̄i(θ̂i, δ̂i) = Eθ−i,δ−i
[
πi(k

∗(θ̂i, δ̂i, θ−i, δ−i) | θ̂i)
]
,

π̄−i(θ̂i, δ̂i) = Eθ−i,δ−i
[
π−i(k

∗(θ̂i, δ̂i, θ−i, δ−i) | θ−i)
]
,

t̄i(θ̂i, δ̂i) = Eθ−i,δ−i
[
ti(θ̂i, δ̂i, θ−i, δ−i)

]
,

t̄−i(θ̂i, δ̂i) = Eθ−i,δ−i
[
t−i(θ̂i, δ̂i, θ−i, δ−i)

]
.

Denote by Ui(θ̂i, δ̂i | θi, δi) agent i’s interim expected utility from reporting (θ̂i, δ̂i) if her

true type is (θi, δi) and if agent −i reports her type truthfully:

Ui(θ̂i, δ̂i | θi, δi) = θiv̄i(θ̂i, δ̂i) + h̄i(θ̂i, δ̂i) + t̄i(θ̂i, δ̂i) + δiπ̄−i(θ̂i, δ̂i) + δit̄−i(θ̂i, δ̂i).

Ease notation by also defining Ui(θi, δi) = Ui(θi, δi | θi, δi). Then the following must hold

for all θi, θ̂i ∈ Θi and all δi, δ̂i ∈ ∆i:

Ui(θi, δi) ≥ Ui(θ̂i, δi | θi, δi)(32)

= Ui(θ̂i, δi) + (θi − θ̂i)v̄i(θ̂i, δi),

Ui(θ̂i, δi) ≥ Ui(θi, δi | θ̂i, δi)(33)

= Ui(θi, δi) + (θ̂i − θi)v̄i(θi, δi),

Ui(θi, δi) ≥ Ui(θi, δ̂i | θi, δi)(34)

= Ui(θi, δ̂i) + (δi − δ̂i)
[
π̄−i(θi, δ̂i) + t̄−i(θi, δ̂i)

]
,

Ui(θi, δ̂i) ≥ Ui(θi, δi | θi, δ̂i)(35)

= Ui(θi, δi) + (δ̂i − δi)
[
π̄−i(θi, δi) + t̄−i(θi, δi)

]
.
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Suppose θ̂i > θi. Then (32) and (33) imply that

v̄i(θ̂i, δi) ≥
Ui(θ̂i, δi)− Ui(θi, δi)

θ̂i − θi
≥ v̄i(θi, δi).(36)

As v̄i is continuous on Θi, letting θ̂i approach θi implies that ∂Ui(θi, δi)/∂θi = v̄i(θi, δi).

Integrating the latter with respect to θi yields the identity

Ui(θi, δi) = pi(δi) +

∫ θi

θmin
i

v̄i(s, δi) ds,(37)

with some function pi : ∆i → R. Similarly, suppose δ̂i > δi. Then (34) and (35) imply

that

π̄−i(θi, δ̂i) + t̄−i(θi, δ̂i) ≥
Ui(θi, δ̂i)− Ui(θi, δi)

δ̂i − δi
≥ π̄−i(θi, δi) + t̄−i(θi, δi).

As π̄−i and t̄−i are continuous on ∆i by assumption, letting δ̂i approach δi implies that

∂Ui(θi, δi)

∂δi
= π̄−i(θi, δi) + t̄−i(θi, δi).(38)

Integrating (38) with respect to δi yields the identity

Ui(θi, δi) = qi(θi) +

∫ δi

δmin
i

π̄−i(θi, r) dr +

∫ δi

δmin
i

t̄−i(θi, r) dr,(39)

with some function qi : Θi → R. As π̄−i and t̄−i are continuous on ∆i, identity (39)

implies that Ui(θi, δi) is differentiable in δi. As v̄i is differentiable in δi, identity (37)

implies that also pi is differentiable in δi. Jointly, (37) and (39) yield

∫ δi

δmin
i

t̄−i(θi, r) dr = pi(δi)− qi(θi) +

∫ θi

θmin
i

v̄i(s, δi) ds−
∫ δi

δmin
i

π̄−i(θi, r) dr.(40)

Differentiating (40) with respect to δi yields

t̄−i(θi, δi) =
dpi(δi)

dδi
− π̄−i(θi, δi) +

∂

∂δi

∫ θi

θmin
i

v̄i(s, δi) ds.(41)
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Ex post budget balance requires in particular that t̄i(θi, δi) = −t̄−i(θi, δi) on Θi × ∆i,

such that truthful revelation of (θi, δi) is Bayesian incentive-compatible for agent i only

if θi satisfies the first-order condition

(42)

0 =
∂

∂θ̂i

[
θiv̄i(θ̂i, δi) + h̄i(θ̂i, δi) + δiπ̄−i(θ̂i, δi)− (1− δi)t̄−i(θ̂i, δi)

]∣∣∣∣∣
θ̂i=θi

= θi
v̄i(θi, δi)

∂θi
+
h̄i(θi, δi)

∂θi
+ δi

π̄−i(θi, δi)

∂θi
− (1− δi)

[
v̄i(θi, δi)

∂δi
− π̄−i(θi, δi)

∂θi

]
= Eθ−i,δ−i

[
dπi(k

∗(θ, δ) | θi)
dk

∂k∗

∂θi
+
dπ−i(k

∗(θ, δ) | θ−i))
dk

∂k∗

∂θi
− (1− δi)

vi(k
∗(θ, δ))

∂δi

]
,

where the second equality is implied by identity (41). In order to be Bayesian imple-

mentable through budget-balanced transfers, k∗ must satisfy identity (42) irrespective

of the specific form that the transfer scheme might take. As k∗ is also assumed to be

strongly Bayesian implementable, identity (42) holds for arbitrary (non-degenerate) type

distributions H−i. However, due to the assumptions on the economic environment, the

argument of Eθ−i,δ−i [ · ] in (42) is continuous in (θ−i, δ−i). Hence, k∗ must satisfy

0 =
dπi(k

∗(θ, δ) | θi)
dk

∂k∗

∂θi
+
dπ−i(k

∗(θ, δ) | θ−i))
dk

∂k∗

∂θi
− (1− δi)

vi(k
∗(θ, δ))

∂δi

for all (θ, δ) ∈ Θ×∆, which proves the first part of the Lemma.

For the second part, reconsider identities (37) and (41). Under truthful revelation,

they jointly imply that

pi(δi) +

∫ θi

θmin
i

v̄i(s, δi) ds = Ui(θi, δi)(43)

= θiv̄i(θi, δi) + h̄i(θi, δi) + t̄i(θi, δi)

+δi
dpi(δi)

dδi
+ δi

∂

∂δi

∫ θi

θmin
i

v̄i(s, δi) ds.

Now suppose k∗ is independent from externality types: ∂k∗/∂δi = 0 for all i. According

to identities (43) and (41), respectively, t̄i(θi, δi) and t̄−i(θi, δi) then satisfy

t̄i(θi, δi) = pi(δi)− δi
dpi(δi)

dδi
− θiv̄i(θi, δi)− h̄i(θi, δi) +

∫ θi

θmin
i

v̄i(s, δi) ds,(44)

t̄−i(θi, δi) =
dpi(δi)

dδi
− π̄−i(θi, δi),(45)
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where, now, only the terms containing pi effectively depend on δi. Due to budget balance,

identities (44) and (45) imply that pi solves the differential equation

ai = pi(δi) + (1− δi)
dpi(δi)

dδi
,(46)

where ai is some constant. Differentiating (46) with respect to δi yields ∂2pi(δi)/∂δ
2
i = 0,

such that dpi(δi)/dδi = −αi for some constant αi. Hence, identity (45) reads t̄−i(θi, δi) =

−αi − π̄−i(θi, δi), implying that t̄i(θi, δi) = αi + π̄−i(θi, δi) = αi + Eθ−i
[
π−i(k

∗(θ̂) | θ−i)
]
,

due to budget balance and ∂k∗/∂δi = 0.

Proof of Theorem 2 Extended

With notation adopted from the proof of Lemma 1, T ∗ satisfies

t̄i(θ̂i, δ̂i) = ai + pi(δ̂i)− δ̂i
∂pi(δ̂i)

∂δ̂i
− π̄i(θ̂i, δ̂i)

+

∫ θ̂i

θmin
i

v̄i(s, δ̂i) ds− δ̂i
∂

∂δ̂i

∫ θ̂i

θmin
i

v̄i(s, δ̂i) ds,

t̄−i(θ̂i, δ̂i) = bi +
∂pi(δ̂i)

∂δ̂i
− π̄−i(θ̂i, δ̂i) +

∂

∂δ̂i

∫ θ̂i

θmin
i

v̄i(s, δ̂i) ds,

with appropriate constants ai, bi ∈ R. Suppose agent −i reports her type truthfully. From

reporting some type (θ̂i, δ̂i), agent i of true type (θi, δi) gains interim expected utility

Ui(θ̂i, δ̂i | θi, δi) = θiv̄i(θ̂i, δ̂i) + h̄i(θ̂i, δ̂i) + t̄i(θ̂i, δ̂i)

+ δiπ̄−i(θ̂i, δ̂i) + δit̄−i(θ̂i, δ̂i)

= θiv̄i(θ̂i, δ̂i) + ai + pi(δ̂i)− δ̂i
∂pi(δ̂i)

∂δ̂i
− θ̂iv̄i(θ̂i, δ̂i)

+

∫ θ̂i

θmin
i

v̄i(s, δ̂i) ds− δ̂i
∂

∂δ̂i

∫ θ̂i

θmin
i

v̄i(s, δ̂i) ds

+ δibi + δi
∂pi(δ̂i)

∂δ̂i
+ δi

∂

∂δ̂i

∫ θ̂i

θmin
i

v̄i(s, δ̂i) ds.
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Partial derivatives thus satisfy

∂

∂θ̂i
Ui(θ̂i, δ̂i | θi, δi) = (θi − θ̂i)

∂

∂θ̂i
v̄i(θ̂i, δ̂i) + (δi − δ̂i)

∂

∂δ̂i
v̄i(θ̂i, δ̂i),(47)

∂

∂δ̂i
Ui(θ̂i, δ̂i | θi, δi) = (θi − θ̂i)

∂

∂δ̂i
v̄i(θ̂i, δ̂i)(48)

+ (δi − δ̂i)
∂2

∂δ̂2i

[
pi(δ̂i) +

∫ θ̂i

θmin
i

v̄i(s, δ̂i) ds

]
.

Ease notation by defining Ai = ∂

∂δ̂i
v̄i(θ̂i, δ̂i), Bi = ∂

∂θ̂i
v̄i(θ̂i, δ̂i), and

Ci =
∂2

∂δ̂2i

[
pi(δ̂i) +

∫ θ̂i

θmin
i

v̄i(s, δ̂i) ds

]
.

Then (47) and (48) read

∂

∂θ̂i
Ui(θ̂i, δ̂i | θi, δi) = (θi − θ̂i)Bi + (δi − δ̂i)Ai,(49)

∂

∂δ̂i
Ui(θ̂i, δ̂i | θi, δi) = (θi − θ̂i)Ai + (δi − δ̂i)Ci.(50)

By assumption, Bi > 0. Choose pi(δi) = 1
2
ciδ

2
i , with ci as defined by condition (19). Then

Ci > 0, and condition (18) is satisfied:

A2
i < BiCi.

Notice first that (θ̂i, δ̂i) = (θi, δi) is the unique stationary point of Ui(θ̂i, δ̂i | θi, δi), since

∂

∂θ̂i
Ui(θ̂i, δ̂i | θi, δi) = 0 = ∂

∂δ̂i
Ui(θ̂i, δ̂i | θi, δi) implies that (θi− θ̂i) = −(δi− δ̂i)AiBi and, thus,

0 = (δi − δ̂i) 1
Bi

(BiCi −A2
i ), where Bi > 0 and BiCi −A2

i > 0. Evaluating the Hessian Hi

of Ui(θ̂i, δ̂i | θi, δi) at (θ̂i, δ̂i) = (θi, δi) yields

Hi =

−Bi −Ai
−Ai −Ci

 .(51)

The principal minors of (51), namely −Bi < 0 and det(Hi) = BiCi − A2
i > 0, are

alternating in sign, with the first-order principal minor being negative. Hence, (θi, δi)

is a local maximizer of Ui(θ̂i, δ̂i | θi, δi). It remains to show that truth-telling is indeed

the (unique) global expected utility maximizer for agent i. Given the above, it suffices to
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show that the extension of Ui(θ̂i, δ̂i | θi, δi) to the closure of Θi×∆i has no local maximizer

on the boundary of Θi ×∆i.

Suppose a local maximizer is located on (θmin
i , θmax

i )×{δmin
i } or (θmin

i , θmax
i )×{δmax

i }.

As Ui(θ̂i, δ̂i | θi, δi) is twice partially continuously differentiable, this maximizer, (θ̂i, δ̂i),

must satisfy 0 = ∂

∂θ̂i
Ui(θ̂i, δ̂i | θi, δi) and, thus, (θi − θ̂i) = −(δi − δ̂i)AiBi . Substituting the

latter into (50) yields ∂

∂δ̂i
Ui(θ̂i, δ̂i | θi, δi) = (δi − δ̂i) 1

Bi
(BiCi −A2

i ). As 1
Bi

(BiCi −A2
i ) > 0,

the reporting of δ̂i ∈ {δmin
i , δmax

i } is not optimal, which contradicts the assumption. By a

similar argument one can show that no local maximizer is located on {θmin
i }× (δmin

i , δmax
i )

or {θmax
i } × (δmin

i , δmax
i ). Hence, only the corners of the closure of Θi × ∆i qualify as

further local maximizers.

Suppose (θmax
i , δmax

i ) is a local maximizer. Then 0 ≤ ∂

∂θ̂i
Ui(θ

max
i , δmax

i | θi, δi) and

0 ≤ ∂

∂δ̂i
Ui(θ

max
i , δmax

i | θi, δi) must hold. As (θi − θmax
i ), (δi − δmax

i ) < 0, while Bi, Ci > 0,

this implies that Ai < 0. However, by (49) and (50), (δi − δmax
i ) ≥ −(θi − θmax

i )Ai
Ci

and,

thus,

0 ≤ (θi − θmax
i )Bi + (δi − δmax

i )Ai ≤ (θi − θmax
i )

1

Ci
(BiCi − A2

i ) < 0.

Suppose (θmax
i , δmin

i ) is a local maximizer. Then 0 ≤ ∂

∂θ̂i
Ui(θ

max
i , δmin

i | θi, δi) and 0 ≥
∂

∂δ̂i
Ui(θ

max
i , δmin

i | θi, δi) must hold. As (θi − θmax
i ) < 0, while (δi − δmin

i ), Bi, Ci > 0, this

implies that Ai > 0. However, by (49) and (50), (θi − θmax
i ) ≥ −(δi − δmin

i )Ai
Bi

and, thus,

0 ≥ (θi − θmax
i )Ai + (δi − δmin

i )Ci ≥ (δi − δmin
i )

1

Bi

(BiCi − A2
i ) > 0.

Suppose (θmin
i , δmin

i ) is a local maximizer. Then 0 ≥ ∂

∂θ̂i
Ui(θ

min
i , δmin

i | θi, δi) and 0 ≥
∂

∂δ̂i
Ui(θ

min
i , δmin

i | θi, δi) must hold. As (θi − θmin), (δi − δmin), Bi, Ci > 0, this implies that

Ai < 0. However, by (49) and (50), (δi − δmin) ≤ −(θi − θmin)Ai
Ci

and, thus,

0 ≥ (θi − θmin
i )Bi + (δi − δmin

i )Ai ≥ (θi − θmin
i )

1

Ci
(BiCi − A2

i ) > 0.

Finally, suppose (θmin
i , δmax

i ) is a local maximizer. Then 0 ≥ ∂

∂θ̂i
Ui(θ

min
i , δmax

i | θi, δi)

and 0 ≤ ∂

∂δ̂i
Ui(θ

min
i , δmax

i | θi, δi) must hold. As (δi − δmax
i ) < 0 and (θi − θmin

i ), Bi, Ci > 0,
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this implies that Ai > 0. However, by (49) and (50), (θi − θmin
i ) ≤ −(δi − δmax

i )Ai
Bi

and,

thus,

0 ≤ (θi − θmin
i )Ai + (δi − δmax

i )Ci ≤ (δi − δmax
i )

1

Bi

(BiCi − A2
i ) < 0.

Altogether, (θi, δi) is the unique global maximizer of Ui(θ̂i, δ̂i | θi, δi). As the above

arguments hold for any set of type distributions, T ∗ strongly Bayesian implements k∗.

Derivation of the transfer scheme T ∗ in the proof of Theorem 2

Suppose the transfer scheme T = (t1, t2) strongly Bayesian implements the partially

continuously differentiable allocation rule k∗. With notation adopted from the proof of

Lemma 1, condition (41) states that T must satisfy

t̄−i(θi, δi) =
dpi(δi)

dδi
− π̄−i(θi, δi) +

∂

∂δi

∫ θi

θmin
i

v̄i(s, δi) ds,(52)

where pi : ∆i → R is some differentiable function. By conditions (37) and (52),

pi(δi) +

∫ θi

θmin
i

v̄i(s, δi) ds = Ui(θi, δi)

= π̄i(θi, δi) + t̄i(θi, δi) + δiπ̄−i(θi, δi) + δit̄−i(θi, δi)

= π̄i(θi, δi) + t̄i(θi, δi) + δi
dpi(δi)

dδi
+ δi

∂

∂δi

∫ θi

θmin
i

v̄i(s, δi) ds.

Hence, T ∗ must also satisfy the identity

t̄i(θi, δi) = pi(δi)− δi
dpi(δi)

dδi
− π̄i(θi, δi)(53)

+

∫ θi

θmin
i

v̄i(s, δi) ds− δi
∂

∂δi

∫ θi

θmin
i

v̄i(s, δi) ds.

From identities (52) and (53), T ∗ can be “guessed”. The specific choice of pi ensures that

truth-telling is the unique best response to i’s problem.
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Proof of Theorem 3 Extended

Notice first that, for all (θ̂1, θ2) ∈ Θ and all δ ∈ ∆, the functions Si and T ∗ satisfy

Eθ2
[
t∗1(θ̂1, θ2, δ) + δ1t

∗
2(θ̂1, θ2, δ)

]
= Eθ2

[
S1(θ̂1, θ2, δ)

]
− Eθ1,θ2 [S1(θ1, θ2, δ)] ,(54)

Eθ2
[
S1(θ̂1, θ2, δ)

]
=

∫ θ̂1

θmin
1

Eθ2
[
v1(k

∗(s, θ2, δ))
]
ds(55)

−Eθ2
[
π1(k

∗(θ̂1, θ2, δ) | θ̂1)
]

−δ1 · Eθ2
[
π2(k

∗(θ̂1, θ2, δ) | θ2
]
.

Suppose agent 2 reports her payoff type truthfully. By (54) and (55), agent 1’s interim

expected utility from reporting θ̂1 if her true type is θ1 satisfies

Eθ2
[
u1( · )

]
= Eθ2

[
π1(k

∗(θ̂1, θ2, δ) | θ1)
]
− Eθ2

[
π1(k

∗(θ̂1, θ2, δ) | θ̂1)
]

−Eθ1,θ2 [S1(θ1, θ2, δ)] +

∫ θ̂1

θmin
1

Eθ2
[
v1(k

∗(s, θ2, δ))
]
ds.

Her marginal utility is given by ∂

∂θ̂1
Eθ2
[
u1( · )

]
= (θ1−θ̂1)· ∂∂θ̂1Eθ2

[
v1(k

∗(θ̂1, θ2, δ))
]

, where

the last factor is non-negative by assumption. Hence, truthful revelation is optimal for

agent 1. By symmetry, θ̂2 = θ2. As the above arguments hold for any set of type

distributions, T ∗ strongly Bayesian implements k∗.

Derivation of the transfer scheme T ∗ in the proof of Theorem 3

Suppose externality types are common knowledge, and assume that the partially contin-

uously differentiable allocation rule k∗ is strongly Bayesian implemented by the ex post

budget-balanced transfer scheme T = (t1, t2). With notation adopted from the proof

Lemma 1, agent i of true type (θi, δi) reports her payoff type θ̂i so as to maximize her

interim expected utility,

Ui(θ̂i | θi, δ) = θiv̄i(θ̂i, δ) + h̄i(θ̂i, δ) + t̄i(θ̂i, δ) + δiπ̄−i(θ̂i, δ) + δit̄−i(θ̂i, δ).

Condition (41) in the proof Lemma 1 states that T must satisfy

Ui(θi | θi, δ) = pi(δ) +

∫ θi

θmin
i

v̄i(s, δ) ds(56)
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for some function pi : ∆ → R. For ease of notation, write ti = ti(θ, δ) and πi =

πi(k
∗(θ, δ) | θi). Then, by (56), T satisfies the following identities:

Eθ2
[
t1
]

+ δ1Eθ2
[
t2
]

= p1(δ) +

∫ θ1

θmin
1

v̄1(s, δ) ds− Eθ2
[
π1
]
− δ1Eθ2

[
π2
]
,(57)

Eθ1
[
t2
]

+ δ2Eθ1
[
t1
]

= p2(δ) +

∫ θ2

θmin
2

v̄2(s, δ) ds− Eθ1
[
π2
]
− δ2Eθ1

[
π1
]
.(58)

Due to budget balance, (57) and (58) imply that interim expected transfers satisfy

(1− δ1)Eθ2
[
t1
]

= p1(δ) +

∫ θ1

θmin
1

v̄1(s, δ) ds− Eθ2
[
π1
]
− δ1Eθ2

[
π2
]
,

−(1− δ2)Eθ1
[
t1
]

= p2(δ) +

∫ θ2

θmin
2

v̄2(s, δ) ds− Eθ1
[
π2
]
− δ2Eθ1

[
π1
]
.

From these conditions, T ∗ can be “guessed”.

Proof of Proposition 6 Continued

It remains to show that the bargaining solutions (24) and (25) each satisfy sgn(∂k
∗

∂θ1
∂k∗

∂θ2
) =

−1 = sgn(∂k
∗

∂δ1
∂k∗

∂δ2
), where ∆i ⊂ (−1,

θmin
i

θmax
−i

) is assumed for (25).

Implicit differentiation of (24) yields

∂F

∂k∗
∂k∗

∂δ1
= θ2v(1− k∗),

∂F

∂k∗
∂k∗

∂δ2
= −θ1v(k∗),

∂F

∂k∗
∂k∗

∂θ1
= (1− δ2)v(k∗),

∂F

∂k∗
∂k∗

∂θ2
= −(1− δ1)v(1− k∗),

where ∂F
∂k∗

= −θ2(1 − δ1)v
′(1 − k∗) − θ1(1 − δ2)v

′(k∗) < 0. Hence, ∂k∗

∂δ1
< 0 < ∂k∗

∂δ2
and

∂k∗

∂θ1
< 0 < ∂k∗

∂θ2
.
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Implicit differentiation of (25) yields

∂G

∂k∗
∂k∗

∂δ1
= θ22v(1− k∗),(59)

∂G

∂k∗
∂k∗

∂δ2
= −θ21v(k∗),(60)

∂G

∂k∗
∂k∗

∂θ1
= (θ2 − 2δ2θ1)v(k∗)− θ2v(1− k∗),(61)

∂G

∂k∗
∂k∗

∂θ2
= θ1v(k∗)− (θ1 − 2δ1θ2)v(1− k∗),(62)

where ∂G
∂k∗

= −θ2(θ1 − δ1θ2)v′(1 − k∗) − θ1(θ2 − δ2θ1)v′(k∗) < 0 for δmax
i <

θmin
i

θmax
−i

. Hence,

sgn(∂k
∗

∂δ1
∂k∗

∂δ2
) = −1. By substituting for (25) in (61) and (62), one observes that

∂G

∂k∗
∂k∗

∂θ1
= −(δ1θ

2
2 − 2δ1δ2θ1θ2 + δ2θ

2
1)

v(k∗)

θ1 − δ1θ2
= −θ2

θ1

∂G

∂k∗
∂k∗

∂θ2
.(63)

Hence, sgn(∂k
∗

∂θ1
∂k∗

∂θ2
) = −1. In particular, ∂k∗

∂θ2
< 0 < ∂k∗

∂θ1
if ∆i ⊂ (0,

θmin
i

θmax
−i

), since then

δ1θ
2
2 − 2δ1δ2θ1θ2 + δ2θ

2
1 = (δ1θ2 − δ2θ1)2 + δ1(1− δ1)θ22 + δ2(1− δ2)θ21 > 0.
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