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Abstract

The challenges associated with poverty measurement in an axiomatic framework, especially with
cardinal variables, have received due attention during the last four decades. However, there is a
dearth of literature studying how to meaningfully assess poverty with ordinal variables, capturing
the depth of deprivations. In this paper, we first axiomatically characterise a class of additively
decomposable ordinal poverty measures using a set of basic foundational properties. We then in-
troduce, in a novel effort, a set of properties incorporating different degrees of poverty aversion
in the ordinal context and characterise relevant subclasses. We further develop related stochastic
dominance conditions for all our characterised classes and subclasses of measures. We demon-
strate the efficacy of our methods using an empirical illustration studying sanitation deprivation
in Bangladesh. Finally, we elucidate how our ordinal measurement framework is related to the
burgeoning literature on multidimensional poverty measurement.
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1. Introduction

Around four decades ago, in an influential article titled Poverty: An Ordinal Approach
to Measurement, Nobel laureate Amartya Sen proposed an axiomatically derived poverty
measure to avoid some shortcomings of the traditionally used headcount ratio (Sen, 1976).
Sen’s approach was ordinal in the sense that his poverty measures assigned an ordinal-rank
weight to each poor person’s income, an otherwise cardinal variable. Since then, this seminal
article has influenced a well-developed literature on poverty measurement involving cardinal
variables within an axiomatic framework (Thon, 1979; Clark et al., 1981; Chakravarty, 1983;
Foster et al., 1984; Foster and Shorrocks, 1988a,b; Ravallion, 1994; Shorrocks, 1995).

Distances between the values of cardinally measurable variables are meaningful. By contrast,
ordinal variables merely consist of ordered categories and cardinal distances between these
categories are hard to interpret when numerals are assigned to them, respecting their order
or rank.1 And yet, the practice of using ordinal variables has been on the rise due to the
recent surge in interest toward studying deprivation in non-monetary indicators, which are
often ordinal in nature (e.g. type of access to basic facilities).2 However, there may also be
instances where ordinal categories of an otherwise cardinally measurable variable may have
more policy relevance. For example, it may be of more interest to focus on ordered categories
of income, nutritional status, or years of education completed, than the cardinal values of
these indicators themselves.

How should poverty be meaningfully assessed with ordinal variables? One straightforward
way may be to dichotomise the population into a group of deprived and a group of non-
deprived people, and then use the headcount ratio. However, this index is widely accused of
ignoring the depth of deprivations (Foster and Sen, 1997). For instance, in Sylhet province of
Bangladesh between 2007 and 2011, the proportion of population with inadequate sanitation
facilities went down from around 70% to nearly 63%; whereas, during the same period,
the proportion of people with the worst form of sanitation deprivation (‘open defecation’)
increased significantly, from around 2% to more than 12% (see Table 2 in Section 6).

How can the depth of deprivations be reasonably captured in the case of ordinal variables?
The challenges associated with measuring well-being and inequality using an ordinal vari-
able in an axiomatic framework have received due attention during the last few decades
(e.g., Mendelson, 1987; Allison and Foster, 2004; Apouey, 2007; Abul Naga and Yalcin,
2008; Zheng, 2011; Kobus and Milos, 2012; Permanyer and D’Ambrosio, 2015; Kobus, 2015;
Lazar and Silber, 2013; Yalonetzky, 2013; Gravel et al., 2015). Yet such efforts in the assess-
ment of poverty have been inadequate so far (see, for example, Bennett and Hatzimasoura,

1Based on the classification of measurement scales by Stevens (1946), whenever numeral scales are assigned
to different ordered categories of an ordinal variable according to the orders or ranks of these categories, any
‘order-preserving’ or monotonic transformation should leave the scale form invariant. See Roberts (1979)
for further in-depth discussions. In this paper, by ordinal variables we simply refer to variables with ordered
categories, where numeral scales may not have necessarily been assigned to the categories.

2For example, as part of the first Sustainable Development Goals, the United Nations has set the target to
not only eradicate extreme monetary poverty for all people everywhere, but also to reduce at least by half
the proportion of men, women and children of all ages living in poverty in all its dimensions by 2030. See
http://www.un.org/sustainabledevelopment/poverty/ (accessed in April 2017).
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2011; Yalonetzky, 2012).3 Bennett and Hatzimasoura (2011) characterised a class of ordinal
poverty indices, motivated by the seminal Foster et al. (1984) class of indices for cardinal
variables. Each ordinal measure in the Bennett-Hatzimasoura class could be expressed as a
weighted sum of the population proportions in each deprivation category, where the weights
are based on normalised ordinal rank shortfalls of the deprivation categories and are uniquely
determined by a single parameter resembling the poverty aversion parameter of Foster et al.
(1984). However, Yalonetzky (2012) showed such weights to be unnecessarily restrictive.

Our paper contributes theoretically to the poverty measurement literature in three ways.
First, we axiomatically characterise a class of ordinal poverty measures under a minimal
set of well-motivated and desirable properties. Our class consists of measures that are
weighted sums of population proportions in deprivation categories and includes the Bennett-
Hatzimasoura class as a subclass. Our measures are sensitive to the depth of deprivations,
unlike the headcount ratio, are additively decomposable and are bounded between zero and
one. These features make them amenable for a broad range of empirical applications.

Second, an adequately designed poverty measure should also ensure that policy makers have
additional incentive to provide precedence to those poorer among the poor in the design of
poverty alleviation policies so that the poorest are not left behind.4 We operationalise the
concept of precedence to poorer people with a novel property incorporating a type of aversion
to poverty in the ordinal context and characterise corresponding sub-classes of ordinal poverty
measures. This new property encompasses, as limiting cases, both previous attempts at
sensitising ordinal poverty indices to the depth of deprivations (Bennett and Hatzimasoura,
2011; Yalonetzky, 2012) as well as current burgeoning approaches to distributional sensitivity
in ordinal frameworks based on Hammond transfers (Hammond, 1976; Gravel et al., 2015).

Third, since each of our classes and subclasses admits a large number of poverty measures,
we develop related stochastic dominance conditions whose fulfilment guarantees the robust-
ness of poverty comparisons to alternative functional forms and measurement parameters.
While a few conditions are the ordinal-variable analogue of existing dominance conditions
for cardinal variables (Foster and Shorrocks, 1988b), others are themselves a novel method-
ological contribution to the literature on stochastic dominance with ordinal variables, to the
best of our knowledge.

To demonstrate the efficacy of our approach, we first present an empirical illustration study-
ing the evolution of sanitation deprivation in Bangladesh. Interestingly, our measures are
able to discern the instances where the improvements in overall sanitation deprivation did
not necessarily include the poorest. We then discuss how our proposed class may be ap-
plied in the multidimensional context, where multiple variables are used jointly to assess
poverty. We show that many well-known additively decomposable multidimensional poverty
indices, based on the counting approach (Townsend, 1979; Atkinson, 2003), have the same
aggregation expression as our proposed class of ordinal measures.

3We refer to the unidimensional context here. The issue of ordinality has certainly been examined thoroughly
in the context of multidimensional poverty measurement (Alkire and Foster, 2011; Bossert et al., 2013;
Dhongde et al., 2016; Bosmans et al., 2017). However, even in the multidimensional context, ordinal
variables are dichotomised in practice, thereby ignoring the depth of deprivations within indicators.

4Poverty measures may affect the incentives of policy makers during poverty alleviation (Zheng, 1997).
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The rest of the paper proceeds as follows. We present the notation and basic measurement
framework in Section 2. In Section 3, we introduce the key desirable properties and charac-
terise the class of ordinal poverty measures. Section 4 introduces the concept of precedence to
poorer people and characterises the subclass of relevant poverty indices. Section 5, then, de-
velops stochastic dominance conditions for the characterized class and subclasses of poverty
measures. Section 6 provides an empirical illustration analysing sanitation deprivation in
Bangladesh. Section 7 elucidates how our ordinal measurement framework can contribute to
the burgeoning literature of multidimensional poverty measurement. Section 8 concludes.

2. Notation and framework

Suppose there is a social planner whose objective is to assess poverty in a hypothetical society
consisting of N ∈ N individuals, where N is the set of positive integers. We denote the level of
well-being of person n by xn ∈ R+ for all n = 1, . . . , N , where R+ is the set of non-negative
real numbers. We denote the vector of individual well-being levels by x = (x1, . . . , xN),
the set of all individual well-being vectors of population size N by XN , and the set of all
individual well-being vectors of any population size by X. The set of all individuals in x is
denoted by N(x).

The actual level of individual well-being in this hypothetical society may often be unmeasur-
able or somehow unobservable to the social planner. Instead, the social planner may merely
observe a set of ordered categories. For instance, self-reported health status may only include
response categories, such as ‘good health’, ‘fair health’, ‘poor health’, and ‘very poor health’.
Similarly, there are also instances where the ordinal categories of an otherwise cardinal vari-
able, such as - the Body Mass Index (BMI) for assessing nutritional status or the years of
schooling completed for assessing the level of educational attainment, has more policy rele-
vance. Even though the BMI is cardinal, the differences between its cardinal values may not
have the same interpretation. According to the World Health Organisation (WHO), both
the BMIs of 15.4 and 15.9 mean ‘severe thinness’, but a BMI of 18.4 means ‘mild thinness’
and a BMI of 18.9 means ‘normal weight’, despite the same cardinal differences. Notably,
a ‘severely thin’ person is less well nourished than a ‘moderately thin’ person and both are
less well nourished than a ‘normal weight’ person.

Suppose, there is a fixed set of S ∈ N\{1} ordered categories c1, . . . , cS, such that cs−1 �D cs
for all s = 2, . . . , S, where �D is a binary, transitive and reflexive relation whereby category
cs−1 represents a worse-off situation (or higher deprivation) than category cs. Thus, cS is the
category reflecting highest well-being (or least deprivation) and c1 is the state reflecting lowest
well-being or highest deprivation. Suppose, for example, a society’s well-being is assessed by
the education dimension and the observed ordered categories are: No education, Primary
education, Secondary education, and Higher education, such that No education �D Primary
education �D Secondary education �D Higher education. Then, c4 = Higher education and
c1 = No education. We denote the set of all S categories by C = {c1, c2, . . . , cS} and the set
of all categories excluding the category of least deprivation cS by C−S = C \ {cS}.

We denote the set of individuals in x experiencing category cs by Ωs(x), such that Ωs(x) ∩
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Ωs′(x) = ∅ for all s 6= s′ and ∪Ss=1Ωs(x) = N(x). Let ps(x) denote the proportion of
the population in x experiencing category cs; that is, the proportion of overall population
in Ωs(x). Then, by definition, ps(x) ≥ 0 for all s and

∑S
s=1 ps(x) = 1. We denote the

proportions of population in x across S categories by p(x) = (p1(x), . . . , pS(x)).

It is customary in poverty measurement to define a poverty threshold identifying the poor
and the non-poor populations (Sen, 1976). Suppose, the social planner decides that category
ck for any 1 ≤ k < S and k ∈ N be the poverty threshold, so that people experiencing
categories c1, . . . , ck are identified as poor ; whereas people experiencing categories ck+1, . . . , cS
are identified as non-poor. We assume that at least one category reflects absence of poverty,
as this restriction is both intrinsically reasonable and required for stating certain properties
in Section 3. When k = 1, only category c1 reflects poverty and for any x ∈ X, in this
case, p1(x) is the proportion of population identified as poor. For every x ∈ X and for
every ck ∈ C−S, we denote the set of poor population by ZP (x; ck) = ∪ks=1Ωs(x), the set of
non-poor population by ZNP (x; ck) = ∪Ss=k+1Ωs(x), and the proportion of poor population or

the headcount ratio by H(x; ck) =
∑k

s=1 ps(x).

A poverty measure P (x; ck) is defined as P : X×C−S → R+. In words, a poverty measure
is a mapping from the set of individual well-being vectors and the set of poverty thresholds
to the real line.

We introduce some additional concepts and notation that will be useful when stating some
of the properties in the next section. First, for any j ∈ N\{1}, a permutation matrix Pj is a
j × j non-negative square matrix with only one element in each row and each column being
equal to one and the rest of the elements being equal to zero. Then, for any two vectors
a,b ∈ Rj, we say that b is obtained from a by permutation if b = aPj, where a permutation
simply changes the position of the elements within a vector. Second, for any a ∈ Rj and for
any b ∈ Rr×j, where r ∈ N\{1} and j ∈ N, we say that b is obtained from a by replication
whenever b = (a, . . . , a). Note that a replication simply creates a multiplication of every
element in a vector by r > 1 times to obtain another vector.

In this paper, we will also be interested in exploring the relationship between the overall
poverty evaluation and the subgroup poverty evaluation, which requires some subgroup no-
tation. Suppose, the entire society with individual well-being vector x ∈ XN is partitioned
into M ∈ N\{1} mutually exclusive and collectively exhaustive population subgroups, such
that x = (x1, . . . ,xM). The individual well-being vector of subgroup m is denoted by
xm ∈ XNm for all m, where the population size of subgroup m is denoted by Nm ∈ N, such
that

∑M
m=1N

m = N .

3. Properties and axiomatic characterisation

Can the information available for the ordered categories of an ordinal variable be meaning-
fully aggregated to obtain a cardinal poverty measure? The answer to this question depends
on certain desirable properties that the poverty measure P could be demanded to satisfy.
We introduce eight properties in this section. The first four properties are stated in a way
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that is customary in the literature, defined on the actual levels of individual well-being. The
rest of the four properties are adapted to the ordinal setting, aligned with the assumption
that the social planner only observes the ordered categories instead of the actual levels of
well-being. We then derive and axiomatically characterise a class of ordinal poverty measures
in Theorem 3.1, using the result presented in Lemma 3.1.

The first property is continuity, which requires a poverty measure to be jointly continuous
on individual well-being levels and poverty thresholds. In other words, a poverty measure
should change continuously owing to a change in a poor individual’s well-being level:

Continuity (CON) P is jointly continuous on X and C−S.

The second property is anonymity, which requires each person’s identity to remain anony-
mous for the purpose of poverty measurement. Thus, merely shuffling the individual well-
being levels of people within a society, keeping population size unchanged, should not alter
the social poverty evaluation:

Anonymity (ANO) For any x,y ∈ XN and for any ck ∈ C−S, if y = xPN then P (x; ck) =
P (y; ck).

The third property is population principle, which requires that a mere duplication of indi-
vidual well-being levels should not alter the poverty evaluation. This property allows us to
compare societies with different population sizes:

Population Principle (POP) For any x,y ∈ X and for any ck ∈ C−S, if y is obtained
from x by replication, then P (x; ck) = P (y; ck).

The fourth property, subgroup consistency, is due to Foster and Shorrocks (1991). This prop-
erty requires that if any individual well-being vector is partitioned into two or more mutually
exclusive and collectively exhaustive population subgroups, and if poverty increases strictly
in any one population subgroup while poverty does not decrease in any other population sub-
group(s), then overall poverty must increase. It is a policy-relevant property which prevents
inconsistent poverty evaluations:

Subgroup Consistency (SCN) For any M ∈ N/{1}, for any x,y ∈ XN such that x =
(x1, . . . ,xM) and y = (y1, . . . ,yM) where xm,ym ∈ XNm for some Nm ∈ N for all m =
1, . . . ,M , and for any ck ∈ C−S, if P (yj; ck) > P (xj; ck) but P (ym; ck) ≥ P (xm; ck) for all
m 6= j, then P (y; ck) > P (x; ck).

The first four properties allow a poverty measure P : X×C−S → R to be presented in
additively separable form as in Equation 1 within Lemma 3.1. We refer to the class of
poverty measures presented in Equation 1 by P̄ .
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Lemma 3.1 A poverty measure P : X×C−S → R satisfies properties CNT, ANO, POP,
and SCN if and only if

P (x; ck) = F

[
1

N

N∑
n=1

φ(xn)

]
; (1)

where F is continuous and increasing and φ is continuous.

Proof. The proof follows directly from Foster and Shorrocks (1991).

The remaining four properties are adapted to respect the ordinal framework. The fifth
property, ordinal categorisation, requires that if all individuals in two different societies with
equal population sizes experience the same category, then the two societies should experience
the same level of poverty. What is the justification for this assumption? Note that the social
planner may not observe or be interested in the actual levels of individuals’ well-being; so
if the social planner observes all individuals to experience the same category across two
different societies, then she assumes the levels of poverty across these societies to be the
same:

Ordinal Categorisation (ORC) For any x,y ∈ XN and for any ck ∈ C−S, if n ∈ Ωs (x)
for all n ∈ N (x) and n ∈ Ωs (y) for all n ∈ N (y) and for some s ∈ {1, . . . , S}, then
P (x; ck) = P (y; ck).

The sixth property is ordinal monotonicity, which requires that if the well-being level of a
poor person improves so that the person experiences a better category of well-being, then
poverty should be lower. The formal statement of the property requires that if a poor person
moves from a category cs reflecting poverty to a less deprived state cs′ , while the well-being
levels of every other person remain unchanged, then poverty should fall:

Ordinal Monotonicity (OMN) For any x,y ∈ XN and for any ck ∈ C−S, if y is obtained
from x, such that n′ ∈ Ωs(x) ⊆ ZP (x; ck) but n′ ∈ Ωs′(y) for any s′ > s, while xn = yn for
all n 6= n′, then P (y; ck) < P (x; ck).

The seventh property is convergence to headcount ratio. The property requires that whenever
there is only one state reflecting poverty (i.e. c1), then the poverty measure should be equal to
the headcount ratio H(·; c1) = p1(·). In other words, we assume that whenever there is only
one category reflecting poverty and the rest reflecting absence of poverty, then the headcount
ratio becomes a sufficient statistic for the assessment of poverty. In fact, in this situation, any
functional transformation of the headcount ratio would not add any meaningful information
to the poverty assessment while being inferior in terms of intuitive interpretation:

Convergence to Headcount Ratio (CHR) For any x ∈ X and c1 ∈ C−S,
P (x; c1) = p1(x).
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The final property, focus, is essential for a poverty measure. It requires that, ceteris paribus,
change in the individual well-being levels among the non-poor should not alter poverty
evaluations as long as non-poor people remain in that status. Given that the social planner
cannot observe the actual well-being levels of individuals, it is required that as long as the set
of poor people remains unchanged within each of the k categories reflecting poverty, the level
of poverty should be the same. Note that the set of non-poor people may remain unchanged
or may be different across the S − k categories not reflecting poverty, but this should not
matter for poverty evaluation:

Focus (FOC) For any x,y ∈ XN and for any ck ∈ C−S, if Ωs(x) = Ωs(y) ∀s ≤ k, then
P (x; ck) = P (y; ck).

These final four properties then lead to the class P of poverty measures as in Theorem 3.1
using the result presented in Lemma 3.1:

Theorem 3.1 A poverty measure P ∈ P̄ satisfies properties OMN, ORC, CHR and FOC
if and only if

P (x; ck) =
S∑
s=1

ps(x)ωs (2)

where ω1 = 1, ωs−1 > ωs > 0 for all s = 2, ..., k whenever k ≥ 2, and ωs = 0 for all s > k.

Proof. See Appendix A1.

Theorem 3.1 is quite powerful in the sense that the only class of additively separable poverty
measures in P̄ that satisfy the set of four ordinal properties is the weighted sum of the
population proportions in p(x), where the weights are non-negative for all categories, strictly
positive for the deprived categories, and unity for the most deprived category. We refer to
weights ωs’s as ordering weights and to ω = (ω1, . . . , ωS) as the ordering weighting vector.

In order to satisfy the key OMN property, the ordering weights increase with deprived
categories representing higher levels of deprivation. In practice, the ordering weights may
take various forms. One example may be drawn from Bennett and Hatzimasoura (2011),
where each deprivation category is assigned ordering weights based on the relative deprivation
ranks. In this case, category s is assigned an ordering weight equal to [(k− s+ 1)/k]θ for all
s = 1, . . . , k and for some θ > 0. Thus, the least deprived category ck receives an ordering
weight of ωk = 1/kθ; whereas, the most deprived category c1 receives an ordering weight
of ω1 = 1. Whichever forms the ordering weights take, nonetheless, Theorem 3.1 clearly
requires that the most deprived category must be assigned an ordering weight equal to one
and any category not representing poverty must be assigned a ‘null ordering weight’.

The class of poverty measures in Equation 2 bears certain policy-relevant features. First, the
poverty measure is additively decomposable, which means that the overall poverty measure
of the society may be expressed as a population-weighted average of the population sub-
group poverty measures. Note that this property is not an axiomatic assumption, but stems
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logically from the foundational properties. Second, the poverty measure is conveniently nor-
malised between zero and one. The poverty measure is equal to zero only in a society where
nobody is poor; whereas, the poverty measure is equal to one only whenever everybody in
the society experiences the worst possible deprivation category c1. Again, note that this
normalisation behaviour is not an axiomatic assumption, but a logical conclusion from the
foundational properties (by contrast to Bennett and Hatzimasoura (2011), who proposed
weights based on normalised ranks before characterising their class of measures). Third,
the poverty measure efficiently boils down to the headcount ratio either when the poverty
threshold is represented by the most deprived category or whenever the underlying ordinal
variable has merely two categories.

4. Providing precedence to the poorer among the poor

Although the poverty measures in Equation (2) satisfy certain desirable properties and bear
some policy relevant features, they do not ensure that the poorest among the poor popula-
tion receive precedence over the less poor population in poverty alleviation efforts. Providing
precedence to those poorer has long been considered in the literature to be equivalent to the
egalitarian view of requiring poverty measures to be sensitive to redistribution of achieve-
ments among the poor (Sen, 1976; Foster et al., 1984; Zheng, 1997). This view is tantamount
to stating that a poverty measure should decrease whenever inequality among the poor is
reduced through rank-preserving Pigou-Dalton transfers. However, this view has been ques-
tioned by Esposito and Lambert (2011), who argue that the concept of providing precedence
to poorer people is actually more aligned with the prioritarian view, which states that “ben-
efiting people matters more the worse off these people are” (Parfit, 1997, p. 213). How
different are egalitarian and prioritarian views from each other? Fleurbaey (2015, p. 208)
argues that these two views fundamentally lead to similar conclusions and “a prioritarian
will always find some egalitarians on her side”.5

We introduce certain properties that reflect different ways of providing precedence to poorer
people in the ordinal framework.6 The first property, which we refer to as weakest precedence
to poorer people, requires that, ceteris paribus, moving a poorer person to an adjacent less
deprived category leads to a larger reduction in poverty than moving a less poor person to
a respectively adjacent less deprived category. Conceptually, this property is analogous to
the Pigou-Dalton transfer principle in an ordinal setting:

Weakest Precedence to Poorer People (PRE-W) For any x,y, z ∈ XN , for any k ≥
2, and for any ck ∈ C−S, if (i) y is obtained from x, such that n′ ∈ Ωs(x) ⊆ ZP (x; ck)
but n′ ∈ Ωs+1(y), while xn = yn for all n 6= n′, and (ii) z is obtained from x, such that
n′′ ∈ Ωt(x) ⊆ ZP (x; ck) but n′′ ∈ Ωt+1(z) for some t > s and n′′ 6= n′, while xn = zn for all
n 6= n′′, then P (y; ck) < P (z; ck).

5For an application of the prioritarian concept to the multidimensional context, see Bosmans et al. (2017).
6We have defined only the strict versions of these properties, requiring poverty to be strictly lower in the
aftermath of specific pro-poorest distributional change. Consequently the ensuing results impose strict
inequality restrictions on weights. However, these strict restrictions may be relaxed with alternative versions
if the latter only require poverty to be simply not higher due to the same pro-poorest distributional change.
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The PRE-W property presents a minimal criterion for providing precedence to poorer people.
What if a policy maker faces the possibility of improving the well-being of a poorer person
by one category vis-à-vis improving the well-being of a richer person by several categories?
To ensure that the policy maker still chooses to improve the situation of the poorer person in
these cases, we introduce the property of strongest precedence to poorer people. This property
requires that, ceteris paribus, moving a poorer person to a less deprived category leads to a
larger reduction in poverty than moving a less poor person to a less deprived category. Note
here that the improvement is not restricted to a particular number of adjacent categories.

Strongest Precedence to Poorer People (PRE-S) For any x,y, z ∈ XN , for any k ≥
2, for any ck ∈ C−S, and for any s < s′ ≤ t < t′, if (i) y is obtained from x, such that
n′ ∈ Ωs(x) ⊆ ZP (x; ck) but n′ ∈ Ωs′(y), while xn = yn for all n 6= n′, and (ii) z is obtained
from x, such that n′′ ∈ Ωt(x) ⊆ ZP (x; ck) but n′′ ∈ Ωt′(z) and n′′ 6= n′, while xn = zn for all
n 6= n′′, then P (y; ck) < P (z; ck).

Conceptually, the PRE-S property is analogous to the notion of ‘Hammond transfer’ (Ham-
mond, 1976; Gravel et al., 2015), which essentially involves, simultaneously, an improvement
of a poor person’s situation and a deterioration of a less poor person’s situation, such that
their well-being ranks are not reversed. Importantly, unlike Pigou-Dalton transfers and thus
unlike the PRE-W property, the number of categories between s and s′ does not need to
be the same as the number of categories between t and t′ in the case of PRE-S. An ordinal
poverty measure satisfying property PRE-S also satisfies property PRE-W, but the reverse
is not true. A policy maker supporting property PRE-S over property PRE-W should be
considered more poverty averse.

We can actually generalise this framework (i.e. PRE-S and PRE-W) to incorporate a degree
of precedence to poorer people.7 This general property PRE-α, referred to as precedence
to poorer people of order α, requires that, ceteris paribus, moving a poorer person to an
adjacent less deprived category leads to a larger reduction in poverty than moving a less
poor person up to an α (≥ 1) number of adjacent less deprived categories. For example,
consider a situation where S = 7, k = 6 and α = 3. Poverty falls faster according to poverty
measures satisfying PRE-3 if a poorer person moves from category c1 to category c2 than
if a less poorer person moves from, say, category c2 to any of the three categories c3, c4, or
c5. It should be noted, however, that it may not always be feasible to improve up to three
categories, e.g., moving from category c5 to category c8 in this example.

Precedence to Poorer People of Order α (PRE-α) For any x,y, z ∈ XN , for any k ≥
2, for any α ∈ N such that 1 ≤ α ≤ k − 1, and for any ck ∈ C−S, if (i) y is obtained from
x, such that n′ ∈ Ωs(x) ⊆ ZP (x; ck) but n′ ∈ Ωs+1(y), while xn = yn for all n 6= n′, and
(ii) z is obtained from x, such that n′′ ∈ Ωt(x) ⊆ ZP (x; ck) but n′′ ∈ Ωt′(z) for some t > s,
t′ = min{t+ α, S} and n′′ 6= n′, while xn = zn for all n 6= n′′, then P (y; ck) < P (z; ck).

7The concept is analogous to the degree of poverty or inequality aversion in the cardinal poverty measurement
literature (Clark et al., 1981; Chakravarty, 1983; Foster et al., 1984), but not technically identical.
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Note that PRE-1 is essentially the PRE-W property. This is the case where the social planner
is least poverty averse. As the value of α increases, the social planner’s poverty aversion also
rises. In this framework, the social planner’s poverty aversion is highest at α = k − 1. We
shall show that PRE-α for α = k−1 leads to the same sub-class of ordinal poverty measures
as the PRE-S property. The PRE-α property imposes further restrictions on the class of
measures in Theorem 3.1. In Theorem 4.1, we present the sub-class of measures Pα that
satisfy the PRE-α property:

Theorem 4.1 For any k ≥ 2 and for any α ∈ N such that 1 ≤ α ≤ k−1, a poverty measure
P ∈ P additionally satisfies property PRE-α if and only if:

a. ωs−1−ωs > ωs−ωs+α ∀s = 2, . . . , k−α and ωs−1 > 2ωs ∀s = k−α+1, . . . , k whenever
α ≤ k − 2.

b. ωs−1 > 2ωs ∀s = 2, . . . , k whenever α = k − 1.

Proof. See Appendix A2.

Theorem 4.1 presents various subclasses of indices based on the degree of poverty aversion
α, which we denote as Pα. In order to provide precedence to poorer people, the ordering
weights must be convex. Corollary 4.1 presents the special case of P1, featuring the least
poverty averse social planner:

Corollary 4.1 For any k ≥ 2, a poverty measure P ∈ P additionally satisfies property
PRE-W (i.e. PRE-1) if and only if ωs−1 − ωs > ωs − ωs+1 for all s = 2, ..., k − 1 and
ωk−1 > 2ωk.

Proof. The result follows directly from Theorem 4.1 by setting α = 1.

To provide precedence to poorer people in the spirit of property PRE-W, the ordering weights
must be least convex, such that the difference ωs−1 − ωs is larger than the subsequent
difference ωs − ωs+1, in addition to the restrictions imposed by Theorem 3.1. Suppose,
we summarise the ordering weights by: ω = (ω1, . . . , ωS). Let us consider an example
involving five categories and two ordering weight vectors: ω = (1, 0.8, 0.5, 0, 0) and ω′ =
(1, 0.5, 0.2, 0, 0), where k = 3. The ordering weights in ω fulfill all properties presented
in Theorem 3.1, but the largest reduction in poverty is obtained whenever a poor person
moves from the least poor category to the adjacent non-poor category. By contrast, ordering
weights in ω′ require that the largest reduction in poverty be obtained whenever a poor
person moves from the poorest category to the adjacent second poorest category. Thus,
unlike the ordering weights in ω, the ordering weights in ω′ make sure that poorer people
receive precedence.

Next we present the subclass of poverty measures that satisfy property PRE-S, i.e. PS:

Theorem 4.2 For any k ≥ 2, a poverty measure P ∈ P additionally satisfies property
PRE-S if and only if ωs−1 > 2ωs for all s = 2, . . . , k.

11



Proof. See Appendix A3.

The additional restriction on the ordering weights in Theorem 4.2 effectively prioritises the
improvement in a poorer person’s situation over improvement of any extent in a less poor
person’s situation. Let us consider an example involving five categories and two ordering
weight vectors: ω1 = (1, 0.6, 0.3, 0.1, 0) and ω2 = (1, 0.48, 0.23, 0.1, 0), where k = 4. Clearly,
both sets of weights in ω1 and ω2 satisfy the restriction in Corollary 4.1 that ωs−1 − ωs >
ωs − ωs+1 for all s = 1, . . . , k. However, the ordering weights in ω1 do not satisfy the
restriction in Theorem 4.2, since ω1

1 < 2ω1
2; whereas the ordering weights in ω2 do satisfy

the restriction in Theorem 4.2 as ωs−1 > 2ωs for all s = 1, . . . , k.

Here it is worth pointing out that, remarkably, the subclasses PS (Theorem 4.2) and Pk−1
(Theorem 4.1 when α = k−1) are identical; even though the distributional changes involved
in the PRE-α property are only specific cases of the broader Hammond transfers involved in
axiom PRE-S. Besides being of interest in itself, this perfect overlap between the subclasses
of indices will prove useful in the next section because by deriving the dominance conditions
for the subclasses Pα, we will also obtain the relevant dominance conditions for subclass PS.

5. Dominance conditions

In the previous two sections, we introduced the class of poverty measures P and its sub-
classes Pα and PS. The main parameters for these measures are the set of ordering weights
{ω1, . . . , ωk}, the poverty threshold category ck, and the poverty aversion parameter α. It
is thus natural to inquiry into the circumstances under which ordinal poverty comparisons
are robust to the alternative ordering weights as well as to the alternative poverty threshold
categories. In this section, first we introduce the first-order dominance conditions relevant
to P , followed by the second-order dominance conditions for Pα for all α.

In order to state the conditions we introduce some additional notation. First, we define the
cumulative distribution function (CDF) of any distribution x ∈ X as F (x; cs) ≡

∑s
`=1 p`(x)

for all s = 1, . . . , S. Clearly, F (x; c1) = p1(x) and F (x; cS) = 1. We denote the differ-
ence operator by ∆, and for any x,y ∈ X, express ∆P (x,y; ck) ≡ P (x; ck) − P (y; ck)
where P (·; ck) =

∑S
s=1 ps(·)ωs from Equation (2); ∆F (x,y; cs) ≡ F (x; cs) − F (y; cs); and

∆ps(x,y) ≡ ps(x)− ps(y). For notational convenience, we will often refer to ∆P (x,y; ck) as
∆Pk, ∆F (x,y; cs) as ∆Fs, and ∆ps(x,y) as ∆ps.

5.1. First-order dominance conditions

Theorem 5.1 provides the first-order dominance conditions relevant to all measures in class
P for a given poverty threshold category ck ∈ C−S:

Theorem 5.1 For any x,y ∈ X and for any k ≥ 1, ∆P (x,y; ck) < 0 for all P ∈ P for a
given ck ∈ C−S if and only if ∆F (x,y; cs) ≤ 0 for all s ≤ k with at least one strict inequality.

Proof. See Appendix A4.
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Theorem 5.1 states that poverty in one distribution x ∈ X is strictly lower than in another
distribution y ∈ X for a chosen poverty threshold category ck ∈ C−S and for all measures
P ∈ P if and only if the CDF of x is nowhere above and at least once below the CDF of y
up to category ck. In other words, the poverty comparison for a particular poverty threshold
category ck is robust to all poverty measures P ∈ P if and only if H(x; cs) ≤ H(y; cs) for all
s ≤ k and H(x; cs) < H(y; cs) for at least one s ≤ k.

Corollary 5.1 provides the first-order dominance condition relevant to any measure P ∈ P
for all ck ∈ C−S:

Corollary 5.1 For any x,y ∈ X and for any k ≥ 1, ∆P (x,y; ck) < 0 for any P ∈ P and
for all ck ∈ C−S if and only if ∆F (x,y; cs) ≤ 0 for all s = 2, . . . , k and ∆p1(x,y) < 0.

Proof. The sufficiency part is straightforward and follows from Equation A12. We prove
the necessary condition as follows. First, consider k = 1. Then, ∆P1 < 0 only if ∆F1 < 0
or, equivalently, ∆p1 < 0. Subsequently, the requirement that ∆F (x,y; cs) ≤ 0 for every
s = 2, . . . , k follows from Theorem 5.1.

Interestingly, poverty in distribution x is lower than poverty in distribution y for any P ∈ P
and for all possible poverty threshold categories if and only if H(x; cs) ≤ H(y; cs) for all
s ≤ k and H(x; c1) < H(y; c1). The results in Theorem 5.1 and Corollary 5.1 are the
ordinal versions of the headcount-ratio orderings for continuous variables derived by Foster
and Shorrocks (1988b).

5.2. Second-order dominance conditions

In this section, in Theorem 5.2 we first present the second-order general dominance conditions
relevant to any measure in subclass Pα for α ≥ 1 for a given poverty threshold category
ck ∈ C−S such that k ≥ 2:

Theorem 5.2 For any x,y ∈ X, for any k ≥ 2, and for any α ∈ N such that 1 ≤ α ≤ k− 1,
∆P (x,y; ck) < 0 for all P ∈ Pα for a given ck ∈ C−S:

a. if
∑s

`=1 ∆F (x,y; c`) ≤ 0 for all s = 1, . . . , k with at least one strict inequality; and

b. only if:

i.
∑s

`=1 ∆F (x,y; c`) ≤ 0 for all s = 1, . . . , k with at least one strict inequality, when
α = 1.

ii.
∑s

`=1 ∆F (x,y; c`) ≤ 0 for all s = 1, . . . , k − α + 1 and (
∑k−α

`=1 ∆F (x,y; c`)) +

(
∑k−1

`=k−α+1 2k−α−`∆F (x,y; c`)) + 21−α∆F (x,y; ck) ≤ 0 with at least one strict
inequality; when 2 ≤ α ≤ k − 1.

Proof. See Appendix A5.
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Thus, poverty in x is lower than poverty in y for a given poverty threshold category, for all
P ∈ Pα, and for a given α if all cumulations of the cumulative distribution of x is nowhere
above and at least once strictly below that of y up to the poverty threshold category ck.
Note that this second-order sufficiency requirement is the same no matter the value of α.
However, the sufficient condition is not necessary. The necessary condition depends on the
value of α. It is only for α = 1, i.e. the case of P ∈ P1 satisfying property PRE-W, that the
necessary condition is identical to the sufficient condition. In fact, the condition for α = 1
is the ordinal version of the ‘P2’ poverty ordering due to Foster and Shorrocks (1988b).

Unlike the case of α = 1, the necessary conditions diverge from the sufficient conditions
whenever α ≥ 2. The number of restrictions to check for necessity decreases as the value
of α increases. For α = k − 1, only three such restrictions must be checked. Corollary 5.2
presents the necessary condition for ∆Pk < 0 when α = k − 1 or whenever the poverty
measures satisfy property PRE-S:

Corollary 5.2 For any x,y ∈ X and for any k ≥ 2, ∆P (x,y; ck) < 0 for all P ∈ PS
for a given ck ∈ C−S only if

∑s
`=1 ∆F (x,y; c`) ≤ 0 for s = 1, 2 and ∆F (x,y; c1) +

(
∑k−1

`=2 21−`∆F (x,y; c`)) + 22−k∆F (x,y; ck) ≤ 0 with at least one strict inequality.

Proof. It is straightforward to verify from Theorem 5.2 by setting α = k − 1.

Finally, Corollary 5.3 provides the second-order dominance conditions relevant to any mea-
sure P ∈ Pα for all ck ∈ C−S such that k ≥ 2:

Corollary 5.3 For any x,y ∈ X, ∆P (x,y; ck) < 0 for any P ∈ Pα and for all ck ∈ C−S\{c1}

a. if either (
∑2

`=1 ∆F (x,y; c`) ≤ 0∩∆p1(x,y) < 0) or (
∑2

`=1 ∆F (x,y; c`) < 0∩∆p1(x,y)
≤ 0) whenever k = 2 and additionally

∑s
`=1 ∆F (x,y; c`) ≤ 0 ∀s = 3, . . . , k whenever

k ≥ 3; and

b. only if either (
∑2

`=1 ∆F (x,y; c`) ≤ 0 ∩ ∆p1(x,y) < 0) or (
∑2

`=1 ∆F (x,y; c`) <
0 ∩ ∆p1(x,y) ≤ 0) whenever k = 2 and additionally

∑s
`=1 ∆F (x,y; c`) ≤ 0 for

all s = 3, . . . , k − α + 1 and (
∑k−α

`=1 ∆F (x,y; c`)) + (
∑k−1

`=k−α+1 2k−α−`∆F (x,y; c`)) +
21−α∆F (x,y; ck) ≤ 0 whenever k ≥ 3.

Proof. First consider the case when k = 2. From Equation A13, we obtain ∆P2 = (ω1 −
2ω2)∆F1 + ω2(∆F1 + ∆F2). It is easy to verify that in order to have ∆P2 < 0, it is both
necessary and sufficient that either (

∑2
`=1 ∆F` ≤ 0∩∆p1 < 0) or (

∑2
`=1 ∆F` < 0∩∆p1 ≤ 0).

The additional sufficient and necessary condition for k ≥ 3 follows from Theorem 5.2.

In summary, the robustness of poverty comparisons for various classes and sub-classes of
ordinal measures introduced in Sections 3 and 4 can be assessed with a battery of dominance
tests based on the theorems and corollaries presented in this section.
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6. Empirical illustration: Sanitation deprivation in Bangladesh

We now present an empirical illustration in order to showcase the efficacy of our proposed
measurement method. In the current global development context, both the United Nations
through the Sustainable Development Goals8 and the World Bank through their Report of
the Commission on Global Poverty (World Bank, 2017) have acknowledged the need for
assessing, monitoring, and alleviating poverty in multiple dimensions besides the monetary
dimension. In practice, most non-income dimensions are assessed by ordinal variables. In
this section, we show how our measurement tools may be applied to analyse inter-temporal
sanitation deprivation in Bangladesh.

For our analysis, we use the nationally representative Demographic Health Survey (DHS)
datasets of Bangladesh for years 2007, 2011 and 2014. While computing the estimates and the
standard errors, we incorporate the sampling weights as well as respect the survey design.9

Excluding the non-usual residents, we were able to use the information on 50,215 individuals
from 10,398 households in the 2007 survey, 79,483 individuals from 17,139 households in the
2011 survey, and 77,680 individuals from 17,299 households in the 2014 survey.

Table 1: The five ordered categories of access to sanitation facilities

Category Description 

Open 

defecation 

Human faeces disposed of in fields, forests, bushes, open bodies of water, 

beaches or other open spaces or disposed of with solid waste  

Unimproved Pit latrines without a slab or platform, hanging latrines and bucket latrines  

Limited 
Sanitation facilities of an otherwise acceptable type shared between two or 

more households  

Basic unsafe 

A basic sanitation facility which is not shared with other households, but 

excreta are not disposed safely, such as flushed but not disposed to piped 

sewer system, septic tank or pit latrine 

Improved 

Sanitation facility which is not shared with other households and where 

excreta are safely disposed in situ or treated off-site and includes flush/pour 

flush to piped sewer system, septic tank or pit latrine, ventilated improved 

pit latrine, composting toilet or pit latrine with a slab 
 

One target of the United Nations’ sixth Sustainable Development Goal (whose aim is to
“ensure availability and sustainable management of water and sanitation for all”) is: “by
2030, [to] achieve access to adequate and equitable sanitation and hygiene for all and end
open defecation.” To achieve the target, the Joint Monitoring Programme (JMP) of the
World Health Organisation and the UNICEF proposes using “a service ladder approach to
benchmark and track progress across countries at different stages of development”, building
on the existing datasets.10 We pursue this service ladder approach and apply our ordinal
poverty measures to study the improvement in sanitation deprivation in Bangladesh. We

8Available at https://sustainabledevelopment.un.org/sdgs.
9See NIPORT et al. (2009, 2013, 2016) for details about the survey design.
10The JMP document titled WASH Post-2015: Proposed indicators for drinking water, sanitation and hy-
giene was accessed in April 2017 at https://www.wssinfo.org.

15

https://sustainabledevelopment.un.org/sdgs.
https://www.wssinfo.org


classify households’ access to sanitation in five ordered categories presented in Table 1. The
five categories are ordered as: ‘open defecation’ �D ‘unimproved’ �D ‘limited’ �D ‘basic
unsafe’ �D ‘improved’. We consider all persons living in a household deprived in access to
sanitation if the household experiences any category other than the ‘improved’ category.

Figure 1: Change in population distribution across sanitation categories in Bangladesh
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Source: Authors’ own computations. Standard errors are reported in parentheses.

Figure 1 shows how the estimated population shares in different deprivation categories have
evolved over time in Bangladesh. Clearly, the estimated percentage in the ‘improved’ cate-
gory has gradually increased (statistically significantly) from 28.5% in 2007 to 36.6% in 2011
to 47.8% in 2014. Thus, the proportion of population in deprived categories has gone down
over the same period. Changes within the deprived categories are however mixed. Although
the estimated population shares in the two most deprived categories (‘open defecation’ and
‘unimproved’) have decreased (statistically significantly) systematically between 2007 and
2014, the population shares in the other two deprivation categories have not.

Has this estimated reduction pattern been replicated within all divisions? Table 2 presents
the changes in the discrete probability distributions in three divisions: Dhaka, Rajshahi
and Sylhet.11 The estimated population shares in the ‘improved’ category have increased
(statistically significantly) gradually in all three regions (Table 2), and so the shares of
deprived population have gone down. We however point out two crucial aspects.

First, let us compare the reduction patterns in Dhaka and Rajshahi. The population share
in the ‘improved’ category is higher in Rajshahi in 2011 and 2014 and statistically indistin-
guishable in 2007 implying that sanitation deprivation is never lower in Dhaka. However,
the estimated population shares in the two most deprived categories (‘open defecation’ and

11A new division called Rangpur was formed in 2010, which was a part of the Rajshahi Division. The
Rangpur division did not exist during the 2007 DHS survey and so we have combined this new division
with the Rajshahi division in 2011 and 2014 DHS surveys to preserve comparability over time.
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Table 2: Change in the population shares across sanitation categories in Dhaka, Rajshahi
and Sylhet

   Dhaka  Rajshahi  Sylhet 

Category  2007 2011 2014  2007 2011 2014  2007 2011 2014 

Open defecation  7.5 4.0 2.2 
 

13.8 3.9 3.2 
 

2.1 12.5 9.4 

  (1.4) (0.7) (0.8)  (2.3) (0.8) (0.9)  (0.4) (1.5) (1.3) 

Unimproved  44.3 35.9 22.6 
 

45.3 36.4 28.3 
 

57.2 34.3 23.0 

  (1.9) (1.7) (2.8)  (2.6) (3.1) (2.7)  (3.3) (2.0) (2.6) 

Limited  14.4 18.0 26.1 
 

14.7 20.7 20.2 
 

10.1 17.7 22.3 

  (1.1) (1.5) (2.0)  (1.2) (1.4) (1.3)  (1.9) (0.9) (1.8) 

Basic unsafe  8.6 10.5 5.4 
 

0.2 0.2 0.3 
 

0.6 0.1 0.3 

  (1.0) (1.6) (1.0)  (0.1) (0.1) (0.1)  (0.2) (0.1) (0.2) 

Improved  25.2 31.6 43.7 
 

26.0 38.8 48.0 
 

30.1 35.4 45.0 

  (1.9) (1.9) (2.5)  (1.9) (2.3) (2.3)  (2.3) (1.9) (1.7) 

Source: Authors’ own computations. Standard errors are reported in parentheses. 
 

‘unimproved’) are higher in Rajshahi than in Dhaka in 2007 and 2014 and statistically indis-
tinguishable in 2011. Second, like Dhaka and Rajshahi in Table 2, sanitation deprivation in
Sylhet has also improved gradually. However, the estimated population share in the poorest
category (‘open defecation’) is significantly higher in 2011 and in 2014 than in 2007. A simple
headcount measure, which only captures the proportion of the overall deprived population,
would always overlook these substantial differences.

Table 3: Change in sanitation deprivation by ordinal poverty measures in Bangladesh and
its divisions

    H  P1 
 P2  P3 

Region   2007 2011 2014   2007 2011 2014   2007 2011 2014   2007 2011 2014 

Barisal   66.1 60.5 46.8 
 

47.7 44.0 32.6 
 

35.0 32.6 23.4 
 

25.2 23.5 16.7 

  (2.7) (2.1) (3.3)  (1.9) (1.7) (2.9)  (1.4) (1.4) (2.4)  (1.1) (1.1) (1.8) 

Chittagong   67.1 59.2 44.9 
 

47.0 38.9 29.2 
 

34.8 27.3 20.2 
 

26.2 19.6 14.9 

  (2.9) (2.1) (3.1)  (2.8) (1.7) (2.9)  (2.7) (1.5) (2.7)  (2.6) (1.2) (2.5) 

Dhaka   74.8 68.4 56.3 
 

50.1 42.6 33.5 
 

36.6 29.4 21.8 
 

27.8 21.6 15.4 

  (1.9) (1.9) (2.5)  (1.7) (1.3) (1.8)  (1.6) (1.1) (1.6)  (1.4) (1.0) (1.3) 

Khulna   69.0 61.4 50.3 
 

48.9 41.8 33.0 
 

35.7 29.4 22.7 
 

25.9 20.9 16.1 

  (1.8) (1.6) (2.3)  (1.4) (1.2) (1.7)  (1.1) (1.0) (1.4)  (1.0) (0.7) (1.0) 

Rajshahi   74.0 61.2 52.0 
 

55.2 41.6 34.7 
 

43.0 29.6 24.2 
 

34.1 21.6 17.6 

  (1.9) (2.3) (2.3)  (1.8) (1.9) (1.8)  (1.9) (1.6) (1.5)  (1.9) (1.3) (1.3) 

Sylhet   69.9 64.6 55.0 
 

50.1 47.1 37.9 
 

36.8 36.2 27.9 
 

26.5 28.9 21.9 

  (2.3) (1.9) (1.7)  (1.9) (1.6) (1.7)  (1.5) (1.4) (1.6)  (1.1) (1.4) (1.4) 

Bangladesh   71.5 63.4 52.2 
 

50.4 42.3 33.5 
 

37.5 30.1 23.1 
 

28.5 22.2 16.8 

  (1.0) (0.9) (1.1)  (0.9) (0.7) (0.9)  (0.9) (0.6) (0.8)  (0.8) (0.5) (0.7) 

Source: Authors’ own computations. Standard errors are reported in parentheses. 
 

Table 3 presents four different poverty measures for Bangladesh and for its six divisions. We
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assume the poverty threshold category to be ‘basic unsafe’. The first poverty measure is
the headcount ratio (H), which, in this context, is the population share experiencing any
one of the four deprivation categories. The second measure is P1, such that P1 ∈ P \ {Pα}
for α ≥ 1, and is defined by the ordering weights ω1 = (1, 0.75, 0.5, 0.25, 0). The third
measure is P2 ∈ P1 \ {Pα} for α ≥ 2 with ordering weights ω2 = (1, 0.752, 0.52, 0.252, 0), i.e.
respecting the restrictions in Corollary 4.1, but not respecting, for instance, the restrictions
in Theorem 4.2 or the restrictions in Theorem 4.1 for α ≥ 2; whereas, the fourth measure
is P3 ∈ PS with ordering weights ω3 = (1, 0.4, 0.15, 0.05, 0), i.e. respecting the restrictions
in Theorem 4.2. Note that measures P2 and P3 provide precedences to those that are in the
poorer categories. All four measures lie between 0 and 1, but we have multiplied them by
hundred so that they lie between 0 (lowest deprivation) and 100 (highest deprivation).

Comparison of these measures provide useful insights; especially into the two crucial aspects
that we have presented in Table 2. The headcount ratio estimate in Dhaka is statistically
indistinguishable from the headcount ratio estimate in Rajshahi for 2007, despite deprivation
in the two poorest categories being higher in Rajshahi. However, this crucial aspect is
captured by the latter three measures, which show statistically significantly higher poverty
estimates in Rajshahi than in Dhaka. Similarly, the headcount ratio estimate is higher in
Dhaka than in Rajshahi for 2011, but the difference vanishes when poverty is assessed by
the other three ordinal measures.

7. Application to multidimensional poverty measurement

So far we have focused on a single dimension. The literature on multidimensional poverty,
however, has grown significantly over the last two decades and so has the surrounding debate.
Several multidimensional poverty measures have been proposed in the literature since the
seminal work of Chakravarty et al. (1998) and Bourguignon and Chakravarty (2003) under
the assumption that the underlying dimensions are cardinal. Yet one important concern
has been how to conduct meaningful poverty assessment when the underlying dimensions
are ordinal. This challenge has not been overlooked and various multidimensional poverty
measures motivated by the counting approach (Atkinson, 2003) have been proposed (see, for
instance, Chakravarty and D’Ambrosio, 2006; Alkire and Foster, 2011; Aaberge and Peluso,
2012; Bossert et al., 2013; Alkire and Foster, 2016; Dhongde et al., 2016).

Multidimensional counting measures are based on simultaneous deprivations across different
dimensions. Additively decomposable counting poverty measures are constructed in the
following steps for a hypothetical society with N individuals and D ≥ 2 dimensions. First, if
an individual n is deprived in dimension d, then the person is assigned a deprivation status
score of gnd = 1; whereas, the person is assigned a score of gnd = 0, otherwise. The same
goes for all n = 1, . . . , N and for all d = 1, . . . ,D.

Second, a relative weight wd is assigned to the dth deprivation, such that wd > 0 and∑ D
d=1wd = 1, and an attainment score σn =

∑D
d=1wd(1− gnd) is obtained for all n =

1, . . . , N .12 By construction, 0 ≤ σn ≤ 1 for all n and a larger attainment score reflects

12Note that the relative weights wd’s assigned to dimensions are different from the ordering weights ωs’s.
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lower level of deprivation. Let us denote the n attainment scores by σ = (σ1, . . . , σN).
Given that D is finite, each weighting choice generates a finite number of S attainment
scores, in turn creating S categories c1, . . . , cS, such that category cS reflects least multiple
deprivation and category c1 reflects largest multiple deprivation. We denote the attainment
score corresponding to category cs by Cs so that whenever individual n experiences category
cs, σn = Cs. We denote the proportion of population experiencing score Cs by ps(σ).

In the third step, a category ck for any k < S is selected as a poverty threshold category to
identify the poor, such that all people experiencing category cs for all s ≤ k are identified as
poor. The additively decomposable counting measures (PC) are expressed as:

PC(σ; ck) =
S∑
s=1

f(Cs)ps(σ); (3)

where f(C1) = 1, f(Cs) is monotonically decreasing in its argument for all s ≤ k, and
f(Cs) = 0 for all s > k.

Different measures use different functional forms of f(Cs). For example, Alkire and Foster
(2011) use f(Cs) = (1 − Cs) for all s ≤ k; Chakravarty and D’Ambrosio (2006) use f(Cs) =
(1 − Cs)β for β ≥ 1 and for all s ≤ k = S − 1; whereas Alkire and Foster (2016) use
f(Cs) = (1−Cs)α for α ≥ 1 and for all s ≤ k.13 Note that Equations (2) and (3) are identical
to each other, as the restrictions on f(Cs) are the same as the restrictions on ωs for all s.
Thus, the additively decomposable multidimensional counting measures can be expressed as
the class of ordinal poverty measures in Theorem 3.1.

One controversial aspect surrounding the counting measures presented in Equation (3) is
that they require assigning precise weight (i.e., wd) to each dimensional deprivation (Raval-
lion, 2011; Ferreira and Lugo, 2013). If there is agreement about a set of precise weights,
then indeed counting approaches are highly amicable to policy applications.14 However, if
there is a unanimous agreement only over the ordinal ranking of different combinations of
deprivations, but dissent on the precise weights, then is a non-counting multidimensional
approach feasible using the ordinal measurement method that we have developed?

A second source of controversy is that counting approaches for ordinal variables are not
developed for capturing depth of deprivations within dimensions because each dimension
is first dichotomised into sets of deprived and non-deprived people. Yet capturing depth
of deprivations within dimensions may be of great policy interest.15 Can a non-counting
multidimensional approach be applied using our ordinal measurement method?

Our answer to both questions is yes, which can be demonstrated with an example. Suppose,
poverty is assessed by using two dimensions: E and H, where there are two categories E1, E2

in dimension E and three categories H1, H2, H3 in dimension H. Category E1 in dimension E

13Alkire and Foster (2016) use the parameter values of α ≥ 0, but we ignore the value of α = 0 as the
measure becomes the multidimensional headcount ratio.

14For discussions on weights in the counting approach framework, see Alkire et al. (2015, Chapter 6).
15For an approach to identification (but not aggregation) using a depth approach versus using an intensity

approach in counting framework, see Alkire and Seth (2016).
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and categories H1 and H2 in dimension H reflect deprivations. Suppose we have the following
information about the ordering of deprivations: (i) E1 �D E2, (ii) H1 �D H2 �D H3, and
(iii) H2 �D E1. The first two conditions present the ordering within each dimension; whereas
the third conveys that a single deprivation in any category of dimension H is worse than
a single deprivation in dimension E. Here, we are only aware of the ordinal ranking of
deprivation categories within as well as across two dimensions.

In the multidimensional context, poverty is a reflection of different combinations of de-
privations in different dimensions obtained through an identification function. The three
aforementioned restrictions, along with the additional restriction that multiple deprivations
are worse than a single deprivation, leads to the following raking among the poor:

(E1, H1) �D (E1, H2) �D (E2, H1) �D (E2, H2) �D (E1, H3) �D (E2, H3).

Thus, there are now six ordered categories (i.e., S = 6). Under the assumption that the
poverty threshold category is ck = (E2, H2), a person must be deprived in dimension H
in order to be identified as poor, leaving four ordered poverty categories (k = 4). Clearly,
Theorem 3.1 as well as the concept of precedence to poorer people are applicable to this case.
This example may be easily extended to cases involving more than two dimensions.

Notice that neither did we consider any precise set of weights, nor dichotomise all dimensions.
Dimension H rather had more than one deprivation category. Hence, not only we argue that
the multidimensional counting approaches can be expressed as the ordinal poverty measures
in Theorem 3.1, but we also argue that our ordinal poverty measures may be used for a
broader and holistic multidimensional framework.

8. Concluding remarks

There is little doubt that poverty is a multidimensional concept and the current global devel-
opment agenda correctly seeks to “reduce poverty in all its dimension”. To meet this target,
it is indeed important to assess poverty from a multidimensional perspective. However, one
should not discredit the potential interest for evaluating the impact of a targeted program
in reducing deprivation in a single dimension such as educational or health outcomes and
access to public services, which may often be assessed by an ordinal variable with multiple
ordered deprivation categories. The frequently used headcount ratio, in this case, is ineffec-
tive as it overlooks the depth of deprivations, i.e., any changes within the ordered deprivation
categories.

Our paper has thus posed the question: “how should we assess poverty when variables are
ordinal?” Implicitly, the companion question is: “Can we meaningfully assess poverty going
beyond the headcount ratio when we have an ordinal variable?” Drawing on eight reasonable
axiomatic properties, our answer is: “Poverty can be measured with ordinal variables through
weighted averages of the discrete probabilities corresponding to the ordered categories.” We
refer to these weights as ordering weights, which need to satisfy a specific set of restrictions
in order to render the social poverty indices in fulfillment of the key properties. Our ax-
iomatically characterised class of social poverty indices has certain desirable features, such
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as additive decomposability and being bounded between zero (when none experiences any
deprivation) and one (when everyone experiences the most deprived category). Remarkably,
these desirable features are not mere assumptions, but are logical consequences stemming
from our eight axioms.

By contrast to previous attempts in the literature on poverty measurement with ordinal
variables, we have gone significantly further in the direction of operationalising different
concepts of ‘precedence to the poorer people among the poor’, which ensures that the pol-
icymaker has incentive to assist the poorer over the less poor. We have shown that it is
possible to devise reasonable poverty measures prioritising welfare improvements among the
most deprived when variables are ordinal. We have axiomatically characterised a set of sub-
classes of ordinal poverty measures based on a continuum of different notions of precedence
to the poorer among the poor. Each subclass is defined by an additional restriction on the
admissible ordering weights. The precedence-sensitive measures have been proven useful
in the illustration pertaining to sanitation deprivation in Bangladesh by highlighting those
provinces where the overall headcount improvement did not come about through reductions
in the proportion of population in the most deprived categories.

Since several poverty measures are admissible within each characterized class and subclasses,
we have also developed stochastic dominance conditions for each subclass of poverty mea-
sures. Their fulfilment guarantees that all measures within a given class (or subclass) rank the
same pair of distributions robustly. While some of these conditions represent the ordinal-
variable analog of existing conditions for continuous variables in the poverty dominance
literature (Foster and Shorrocks, 1988b), others are themselves a novel methodological con-
tribution to the literature on stochastic dominance with ordinal variables, to the best of our
knowledge.

Considering the recent surge in the literature on multidimensional poverty measurement,
especially in the counting approach, we showed how our method is closely aligned with the
aggregation procedure characteristic of the counting framework. It is still a usual practice
to dichotomise deprivations within each dimension when using existing counting measures,
ignoring the depth within each category. Future research could focus on how to further
develop the counting measures in order to incorporate depth of deprivations in an ordinal
framework.
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Appendices

Appendix A1. Proof of Theorem 3.1

It is straightforward to check that the poverty measures in Equation 2 satisfy properties
OMN, ORC, CHR, and FOC. We now prove the necessary part that if a poverty measure
in Lemma 3.1 satisfies properties OMN, ORC, CHR, and FOC, then it takes the functional
form in Equation 2.

By Lemma 3.1, we already know that:

P (x; ck) = F

[
1

N

N∑
n=1

φ(xn)

]
(A1)

where F is continuous and increasing and φ is continuous.

Now consider two singleton societies: z = (xi) and y = (xj), such that i ∈ Ωs (z) and j ∈
Ωs (y) for some s ∈ {1, . . . , S}. By property ORC, we already know that P (z; ck) = P (y; ck).
Therefore, from Equation A1, we obtain:

F (φ(xi)) = F (φ(xj)) .

Given that F is increasing and continuous, we must have φ(xi) = φ(xj). So, if x = (xi, xj)
such that i, j ∈ Ωs (x), it then follows that φ(xi) = φ(xj). Clearly, thus, for any x ∈ X and
for any n, n′ ∈ N(x), if n, n′ ∈ Ωs (x) for some s ∈ {1, . . . , S}, then φ (xn) = φ (xn′). Let us
denote φ (xn) = us whenever n ∈ Ωs for any s ∈ {1, . . . , S} and for any n ∈ N (x). We can
now rewrite Equation A1 as:

P (x; ck) = F

[
S∑
s=1

usps(x)

]
(A2)

Now, consider any x,y ∈ XN , such that n ∈ Ωs(x) ⊆ ZP (x; ck) for all n ∈ N(x), but
n ∈ Ωs′(y) for all n ∈ N(x) for some s′ > s. Note in this case that ps(x) = ps′(y) = 1.
Then, from property OMN, we know that P (y; ck) < P (x; ck). Therefore, using Equation
A2, we obtain:

F [us′ ] < F [us].

Given that F is increasing, we get:
us′ < us. (A3)

The relationship in Equation A3 holds for any s, such that s ≤ k but s < s′. In other words,
us−1 > us > us′ for all s = 2, ..., k and for any s′ > k, whenever k ≥ 2. When S = 2, then
k = 1 and so u1 > u2.
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We next use property CHR. Suppose, k = 1. Then, by property CHR, Equation A2 yields:

F [p1(x)u1] = p1(x). (A4)

Note, by definition, that 0 ≤ p1(x) ≤ 1. Hence, F (0) = 0 and F (u1) = 1. Assume,
q = p1(x)u1. Expressing Equation A4 in terms of q yields:

F (q) =
q

u1
. (A5)

Combining Equations A2 and A5, we obtain:

P (x; ck) =
S∑
s=1

ps(x)
us
u1
. (A6)

Substituting ωs = us/u1 for all s = 1, ..., k in Equation A6, we arrive at:

P (x; ck) =
S∑
s=1

ps(x)ωs. (A7)

Clearly, ω1 = u1/u1 = 1. Moreover, from Equation A3, it follows that ωs−1 > ωs > ωs′ for
all s = 2, ..., k and for any s′ > k whenever k ≥ 2.

In order to complete the proof, we need to show that ωs = 0 for all s > k. For this
purpose, consider any x,y ∈ XN , such that n ∈ Ωs′(x) ⊆ ZNP (x; ck) for all n ∈ N(x) and
n ∈ Ωs′′(y) ∈ ZNP (y; ck) for all n ∈ N(y) for any s′′ > s′ > k. Note that ps′(x) = ps′′(y) = 1
and indeed ps(x) = ps(y) = 0 ∀s ≤ k. By property FOC, we then require P (y; ck) = P (x; ck).
Thus, from Equation A7, we obtain P (x; ck) = ωs = ωs′ = P (y; ck) for any s′ > s > k. Since,
ps(x) = ps(y) = 0 ∀s ≤ k, it follows that p1(x) = p1(y) = 0. Consider k = 1. Then, by
property CHR, we must have P (x; ck) = P (y; ck) = 0. Hence, it must be the case that:
ωs = 0 for all s > k, which completes our proof.

Appendix A2. Proof of Theorem 4.1

The sufficiency part is straightforward. We prove the necessity part as follows.

Suppose k ≥ 2 and α ∈ N such that 1 ≤ α ≤ k − 1. Now, suppose, y and z are obtained
from x ∈ XN as follows: For some n′′ 6= n′ and some t > s′, y is obtained from x, such
that n′ ∈ Ωs′(x) ⊆ ZP (x; ck) but n′ ∈ Ωs′+1(y), while xn = yn for all n 6= n′; whereas,
z is obtained from x, such that n′′ ∈ Ωt(x) ⊆ ZP (x; ck) but n′′ ∈ Ωt′(z) for some t > s′

and t′ = min{t + α, S}, while xn = zn for all n 6= n′′. It follows that Ωs(y) = Ωs(x)
for all s 6= s′, s′ + 1 and Ωs(z) = Ωs(x) for all s 6= t, t′; whereas Ωs′(y) = Ωs′(x) − 1,
Ωs′+1(y) = Ωs′+1(x)+1, Ωt(z) = Ωt(x)−1, and Ωt′(z) = Ωt′(x)+1. Note that by construction
t ≤ k.
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By property PRE-α, we know that:

P (y; ck)− P (z; ck) < 0. (A8)

Combining Equations 2 and A8, we get:

ωs′+1 − ωs′ − ωt′ + ωt < 0.

Substituting t = s′ + 1 = s for any s = 2, . . . , k, we obtain:

ωs−1 − ωs > ωs − ωt′ . (A9)

First, suppose t′ = s + α ≤ k < S or s ≤ k − α. Then ωt′ = ωs+α > 0 by Theorem 3.1 and
Equation A9 can be expressed as ωs−1 − ωs > ωs − ωs+α for all s = 2, . . . , k − α. Second,
suppose t′ = min{s + α, S} > k or s > k − α. We know that ωs = 0 for all s > k by
Theorem 3.1 and so Equation A9 can be expressed as ωs−1 − ωs > ωs or ωs−1 > 2ωs for all
s = k − α + 1, . . . , k. This completes the proof.

Appendix A3. Proof of Theorem 4.2

Let us first prove the sufficiency part. Suppose k ≥ 2. We already know from Theorem 3.1
that ωs−1 > ωs > 0 for all s = 2, . . . , k and ωs = 0 for all s > k. Suppose additionally that
ωs−1 > 2ωs for all s = 2, . . . , k. Alternatively, ωs−1 − ωs > ωs for all s = 2, . . . , k.

For any x,y, z ∈ XN , for any ck ∈ C−S, and for some n′′ 6= n′, suppose y is obtained from
x, such that n′ ∈ Ωv(x) ⊆ ZP (x; ck) but n′ ∈ Ωv+α(y) for some α ∈ N, while xn = yn for all
n 6= n′, and z is obtained from x, such that n′′ ∈ Ωt(x) ⊆ ZP (x; ck) for some t ≥ v + α but
n′′ ∈ Ωt+β(z) for some β ∈ N, while xn = zn for all n 6= n′′. By definition, t ≤ k.

It follows that Ωs(y) = Ωs(x) for all s 6= v, v+α and Ωs(z) = Ωs(x) for all s 6= t, t+β; whereas
Ωv(y) = Ωv(x)− 1, Ωv+α(y) = Ωv+α(x) + 1, Ωt(z) = Ωt(x)− 1, and Ωt+β(z) = Ωt+β(x) + 1.
With the help of Equation 2, we get:

P (y; ck)− P (z; ck) = ωv+α − ωv − ωt+β + ωt = (ωt − ωt+β)− (ωv − ωv+α) . (A10)

By assumption of the sufficiency part: ωs−1 − ωs > ωs for all s = 2, . . . , k. Combining
this assumption with the weight restrictions from Theorem 3.1 we can easily deduce that:
(ωv − ωv+α) > (ωv − ωv+1) > ωv+1 > ωv+α. Hence: (ωv − ωv+α) > ωv+α. Since v + α ≤ t ≤ k
and ωs−1 > ωs > 0 for all s = 2, . . . , k, it also follows that ωv+α ≥ (ωt − ωt+β). Hence,
(ωv − ωv+α) > (ωt − ωt+β) and P (y; ck) < P (z; ck).

We next prove the necessity part starting with Equation A10. By property PRE-S, we know
that P (y; ck) < P (z; ck). Thus:

ωv − ωv+α > ωt − ωt+β. (A11)
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Now the inequality in Equation A11 must hold for any situation in which t ≥ v+α, including
the comparison of the minimum possible improvement for the poorer person, given by ωv −
ωv+1 (i.e. with α = 1), against the maximum possible improvement for the less poor person,
given by ωt − ωt+β with t = v + 1 and t+ β > k. Inserting these values into Equation A11,
bearing in mind that ωt+β = 0 when t+ β > k, yields:

ωv − ωv+1 > ωv+1.

Substituting v = s− 1 for any s = 2, . . . , k yields ωs−1 − ωs > ωs. Hence, ωs−1 > 2ωs for all
s = 2, . . . , k.

Appendix A4. Proof of Theorem 5.1

We first prove the sufficiency part. From Theorem 3.1, we know that ωs = 0 for all s > k.
Thus, Equation 2 may be presented using the difference operator as ∆Pk =

∑k
s=1 ωs∆ps.

Using summation by parts, also known as Abel’s lemma (Guenther and Lee, 1988), it follows
that:

∆Pk =
k−1∑
s=1

[ωs − ωs+1]∆Fs + ∆Fkωk. (A12)

We already know from Theorem 3.1 that ωk > 0 and ωs − ωs+1 > 0 ∀s = 1, . . . , k − 1.
Therefore, clearly from equation A12, the condition that ∆Fs ≤ 0 for all s ≤ k and ∆Fs < 0
for at least one s ≤ k is sufficient to ensure that ∆Pk < 0 for all P ∈ P and for a given
ck ∈ C−S.

We next prove the necessity part by contradiction. Either, consider the situation, where
∆Ft > 0 for some t ≤ k, ∆Fs ≤ 0 for all s ≤ k but s 6= t, and ∆Fs < 0 for some s ≤ k but
s 6= t. For a sufficiently large value of ωt − ωt+1 in Equation A12, it may always be possible
that ∆Pk > 0. Or, consider the situation ∆Fs = 0 for all s ≤ k. In this case, ∆Pk = 0.
Hence, the necessary condition requires both ∆Fs ≤ 0 for all s ≤ k and ∆Fs < 0 for some
s ≤ k. This completes the proof.

Appendix A5. Proof of Theorem 5.2

Summing by parts the first component on the right-hand side of Equation A12 yields:

∆Pk =
k−2∑
s=1

(
{[ωs − ωs+1]− [ωs+1 − ωs+2]}

s∑
`=1

∆F`

)
+[ωk−1 − ωk]

k−1∑
s=1

∆Fs+∆Fkωk. (A13)

a. Sufficiency: Define λs (α) = (ωs−1 − 2ωs + ωs+α) + (ωs+1 − ωs+α) for all s = 2, . . . , k − α
and ηs (α) = (ωs−1 − 2ωs) + ωs+1 for all s = k − α+ 1, . . . , k − 1. Then the first component
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in Equation A13 can be decomposed into two components and the last two components may
be rearranged to rewrite the equation as:

∆Pk =
k−α∑
s=2

(
λs (α)

s−1∑
`=1

∆F`

)
+

k−1∑
s=k−α+1

(
ηs (α)

s−1∑
`=1

∆F`

)

+ (ωk−1 − 2ωk)
k−1∑
s=1

∆Fs + ωk

k∑
s=1

∆Fs.

(A14)

Given that ωs−1−2ωs+ωs+α > 0 for all s = 2, . . . , k−α by Theorem 4.1 and ωs+1−ωs+α ≥ 0
for any 1 ≤ α ≤ k − 1 by Theorem 3.1, we know that λs (α) > 0 for all s = 2, . . . , k − α.
Similarly, given that ωs−1 − 2ωs > 0 for all s = k − α + 1, . . . , k − 1 by Theorem 4.1 and
ωs+1 ≥ 0 by Theorem 1, we know that ηs (α) > 0 for all s = k−α+ 1, . . . , k− 1. We further
know that ωk−1 − 2ωk > 0 by Theorem 4.1 and that ωk > 0 by Theorem 3.1. It is now
straightforward to check from Equation A14 that

∑s
`=1 ∆F` ≤ 0 ∀s ≤ k and

∑s
`=1 ∆F` < 0

for at least one s ≤ k, suffice for ∆Pk < 0 for a given ck ∈ C−S.

b.i. Necessity when α = 1: We can rewrite equation A13 the following way:

∆Pk =
k−1∑
s=1

(
{[ωs − ωs+1]− [ωs+1 − ωs+2]}

s∑
`=1

∆F`

)
+ ωk

k∑
s=1

∆Fs. (A15)

We know from Theorem 4.1 that [ωs − ωs+1]− [ωs+1 − ωs+2] > 0 ∀s = 1, ..., k − 1. Likewise
ωk > 0. Yet we do not have any further restriction stating whether any of the weight functions
in equation A15 is strictly greater than the others. Therefore every sum of cumulatives
(
∑s

`=1 ∆F`, s = 1, ..., k) must be non-positive and at least one strictly negative in order to
ensure ∆Pk < 0.

b.ii. Necessity when 2 ≤ α ≤ k − 1: Define additionally δs (α) = (ωs−1 − 2ωs), such that
δs (α) = ηs (α)− ωs+1, for all s = k− α+ 1, . . . , k− 1. Then, the middle two components of
Equation A14 may be rearranged to rewrite the equation as:

∆Pk =
k−α∑
s=2

(
λs (α)

s−1∑
`=1

∆F`

)
+

k−α+2∑
s=k−α+1

(
δs (α)

s−1∑
`=1

∆F`

)

+
k∑

s=k−α+3

(
δs (α)

s−1∑
`=1

∆F`

)
+

k∑
s=k−α+1

(
ωs+1

s−1∑
`=1

∆F`

)
+ ωk

k∑
s=1

∆Fs.

(A16)

We already know that λs (α) > 0 for all s = 2, . . . , k − α by Theorem 4.1 and Theorem 3.1
and it turns out that any of these weights can be larger than the other components’ weights,
it is thus necessary to have

∑s
`=1 ∆F` ≤ 0 for all s = 1, . . . , k−α−1. Next, we also know that

δs (α) > 0 for all s = k−α+1, . . . , k−1. However, not all δs (α)’s are necessarily larger than
other component weights. Whenever k−α+ 3 ≤ k, it turns out that ωs−1 > δs = ωs−1− 2ωs
for all s = k − α + 2, . . . , k. Therefore, even when the third component in Equation A16
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is positive, it is possible to have ∆Pk < 0 whenever the final two components are negative
and carry sufficiently larger relative weight, given that the first two components are not
positive. Hence, it is necessary that the final three components are jointly non-positive,
provided largest possible weights are assigned to the final two components, which requires
ωs → ωs−1/2 for all s = k − α + 3, . . . , k. Consequently, δs → 0 for all s = k − α + 3, . . . , k.
We use these conditions in the final three components of Equation A16 to obtain:

∆Pk =
k−α∑
s=2

(
λs (α)

s−1∑
`=1

∆F`

)
+

k−α+3∑
s=k−α+1

(
δs (α)

s−1∑
`=1

∆F`

)

ωk−α+2

[(
k−α∑
`=1

∆F`

)
+

(
k−1∑

`=k−α+1

2k−α−`∆F`

)
+ 21−α∆Fk

]
.

(A17)

Given that ωk−α+2 may be higher than weights of the rest of the components, it is necessary
that the third component be not positive. Hence, it is necessary that

∑s
`=1 ∆F` ≤ 0 for all

s ≤ k − α + 1 and (
∑k−α

`=1 ∆F`) + (
∑k−1

`=k−α+1 2k−α−`∆F`) + 21−α∆Fk ≤ 0 with at least one
strict inequality for having ∆Pk < 0. This completes the proof.
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