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Abstract

We document that postwar U.S. national elections show a strong pattern of “incumbency

disadvantage”: If the presidency has been held by a party for some time, that party tends

to lose seats in Congress. To generate this, we employ Alesina and Tabellini’s (1990) model

of partisan politics extended to have elections with prospective voting. We show that inertia

in policies (combined with su�cient uncertainty in election outcomes) implies incumbency

disadvantage. We find that inertia can cause parties to target policies that are more extreme

than the policies they would support in the absence of inertia and that such extremism can

be welfare reducing.
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1 Introduction

This paper is motivated by the following observation. Since 1954 there have been eight presidential

elections in which the presidency had been held continuously by either a Democrat or a Republican

for the eight preceding years or more (two or more terms). In seven of those elections, the incumbent

president’s party could not hold on to the presidency. Based on this history, the probability that

the U.S. presidency switches parties after being with any party for eight or more years is 88 percent

(7/8). On the other hand, the fraction of years the Democratic party has held the presidency since

1954 is 0.45, implying that if the outcome of each election was an independent draw, we would

expect the presidency to switch parties with a probability close to one-half in every election. These

two facts suggest that there is an incumbency disadvantage in U.S. national politics: When any

party has held the presidency for two or more terms, the popularity of the party with voters is

strongly diminished.1

We make several contributions. First, we verify that the suggestion of incumbency disadvantage

noted above is in fact present in the electoral performance of the two parties in the postwar era.

Specifically, we show that the Democratic lead in the House is strongly a↵ected by how long the

two parties have held the presidency going into each election.2 For instance, if the Democratic

(Republican) party has held the presidency for six or more years going into an election, the Demo-

cratic lead in the House declines (increases) by 38 seats, on average. This finding persists if we

measure electoral performance with the Democratic House vote share lead instead of the Demo-

cratic House lead: The House Democratic vote share lead declines (rises) by 6 percentage points

going into an election in which the Democrats (Republicans) have held the presidency for six or

more years. These e↵ects persist in roughly the same magnitude when detrended values of the

electoral performance measures are used.

Second, we show that incumbency disadvantage is implied by the time-consistent equilibrium

of Alesina and Tabellini’s (1990) model of partisan politics, if their model is extended in two

very natural ways. First, political turnover occurs via elections in which outcomes depend on

the anticipated policy choices of the two parties as well as on transient voter preference shocks,

1After their first term in o�ce, most presidents get reelected (this fact may reflect the personal appeal of a
president once the public gets to know him and is not addressed in this paper). After two terms in o�ce, a president
cannot run for a third term, so the identity of the next presidential party mostly depends on the appeal of party
platforms.

2Since every seat in the House is generally contested in every national election (held every two years), the scope
of the electorate to express approval or disapproval of current policies is the greatest in House elections.
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and, second, there is policy inertia stemming from costs of (or constraints on) changing policies

quickly. These two features imply that after a long Democratic incumbency (which can happen

randomly), inherited policies will be relatively far from a Republican voter’s preferred policies.

Given diminishing marginal utility, the utility loss to a Democratic voter from a relatively small

change in policy (the change is small due to inertia) toward those preferred by Republicans will

be smaller in magnitude than the utility gain for a Republican from the same change in policy.

As a result, preference shocks will be less determinative for Republicans, and they are more likely

to vote along partisan lines and win the election. The same logic applies in reverse after a long

Republican incumbency.

Third, we show that the policy inertia needed to account for incumbency disadvantage has

important positive and normative implications. On the positive side, each party’s long-run ideal

policy may become more extreme than the incumbent party member’s static ideal policy; i.e., the

policy that maximizes the party member’s period utility. This is significant because when such an

extreme policy is followed, a less extreme policy would improve all voters’ period utility. Since

inertia leads to incumbency disadvantage, parties target more extreme policies so that they can

enjoy policies closer to their ideal even when the opposition is calling the shots. On the normative

side, this extremism may entail a welfare loss for voters.

Fourth, we show that policy inertia and prospective voting enlarge the domain of application

of the median voter and probabilistic voting paradigms wherein policies are selected via Downsian

competition between two parties that care about winning the election.3 As Alesina (1988) first

pointed out, if the two parties have their own agendas and neither party can commit to policies

before the election, then in a Markov equilibrium, the winning party will implement its preferred,

not median, policy regardless of its desire to hold o�ce (i.e., regardless of the intensity of o�ce

motivation).4 In our model as well, without inertia and pre-election commitment, the Markov

equilibrium will have parties choosing their preferred policies regardless of their desire to hold

o�ce; i.e., there will be no movement toward centrist policies stemming from a desire to win

and retain elected o�ce. But policy inertia and prospective voting changes this result and o�ce

motivation begins to matter for policy choice: Choosing policies closer to the voters’ ideal policies

3For recent examples of median voter and probabilistic voting in quantitative macroeconomics, see Mateos-Planas
(2012) and Song, Storesletten, and Zilibotti (2012)

4If parties can commit to a platform before the election, the Downsian outcome becomes possible even with
candidates who compete because they care about policies (Wittman (1983), Calvert (1985)). The Downsian outcome
can also be resurrected if purely ideologically motivated parties play a repeated game with trigger strategies, as shown
in Alesina (1988).
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means a higher chance of losing the next election and, thus, a higher chance of losing the utility

from being in o�ce. The additional private cost of extremism pulls equilibrium policies closer to the

center. Thus, the median voter logic remains active even when parties are ideologically motivated

and there is no pre-election commitment.

Finally, our paper makes a methodological contribution by augmenting the toolkit of researchers

using quantitative theory to study partisan politics with endogenous reelection probabilities. Such

games can be hard to compute because of the possible lack of continuity of Markovian decision rules

(Chatterjee and Eyigungor (2016)) and, consequently, the possible nonexistence of a pure strategy

equilibrium. By incorporating a continuously distributed i.i.d. preference shock, we ensure the

existence of a Markov perfect equilibrium in pure strategies despite equilibrium decision rules

being potentially discontinuous. The existence result puts our model — and other models that

share key features of our environment — on a secure computational footing. To this end, we also

o↵er an algorithm to compute the (potentially discontinuous) Markovian decision rules.5

Our paper is related to several literatures. On the empirical side, our finding of incumbency

disadvantage echoes previous findings in the politics literature. In an early study, Stokes and

Iverson (1962) observed that over the 24 presidential elections between 1868 and 1960, neither

the Republican nor the Democratic party succeeded in winning more than 15 percent beyond an

equal share of presidential or congressional votes, and the same remains true for the 14 presidential

elections since 1960. They interpret their findings as evidence of “restoring forces” that work to

elevate the popularity of the party that has been less popular in the past. More recently, Bartels

and Zaller (2001) study a large set of empirical presidential vote models and identify an“incumbent

fatigue” e↵ect wherein the percent of the two-party vote for the party of the incumbent president

is negatively a↵ected by how long that party has held the presidency. Our findings are similar to

theirs, except that we focus directly on the electoral performance of the two parties in all House

elections rather than the two-party presidential vote share. Relatedly, Alesina and Rosenthal (1995)

5The potential lack of continuity of decision rules and, therefore, of the mapping whose fixed points are pure
strategy Markov equilibria, also plagues models of sovereign debt and default (Chatterjee and Eyigungor (2012)) and
models of legislative bargaining (Duggan and Kalandrakis (2012)). In both instances, the existence problem is solved
by the addition of continuously distributed random shocks in the appropriate places. However, the existence proofs
given in these papers cannot be used to claim existence for the present model since a key element of the present
model — endogenous reelection probability — is missing in these earlier papers. In Duggan and Kalandrakis (2012),
proposer election probabilities are an exogenous function of the state and in Chatterjee and Eyigungor (2012) there
is no political turnover of the sovereign at all.
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noted that the president’s party loses seats in midterm elections (the so-called “midterm cycle”).

We show that there is a long-term incumbency disadvantage not related to midterm cycles.

In the area of macro political economy, we contribute to the growing literature on quantitative-

theoretic partisan political economy models featuring endogenous reelection probabilities. In terms

of model structure and quantitative focus, the closest is Azzimonti (2011). We borrow from her our

model of elections wherein people vote prospectively subject to preference shocks. However, while

the reelection probability is endogenous in her model, her assumption regarding preferences (and

the symmetry of the model) implied that the probability of reelection is state independent. Thus,

by construction, her model is silent on how reelection probabilities evolve over time. Prospective

voting also features importantly in Alesina and Rosenthal’s (1995) explanation of the mid-term

cycle. Their explanation centered around non-polarized voters attempting to get closer to median

policies by counterbalancing a partisan president’s power. In our approach, citizens are as polar-

ized as parties but for random reasons do not always vote along party lines. Coupled with the

policy drift resulting from inertia, we predict an electoral disadvantage that grows with incum-

bency. Prospective voting and endogenous reelection probability also features in Rogo↵’s (1990)

model of the political budget cycle. The friction in his model is asymmetric information about the

competency of the incumbent leader and the cycle arises from the competent type choosing policies

that separate her from the incompetent type. There are cycles in taxes and expenditure policies

but not necessarily incumbency disadvantage.

Prospective voting and endogenous reelection probabilities have recently featured in quantitative

models of sovereign debt and default.6 Scholl (2017) uses a version of the Persson and Svensson’s

(1989) partisan politics model to quantitatively explore the implications of endogenous reelection

probabilities on sovereign borrowing and default behavior, and Chatterjee and Eyigungor (2017)

study the role of prospective voting in accounting for observed fluctuations in the risk of sovereign

default in emerging economies. But incumbency disadvantage is not a necessary feature of these

models.

Endogenous political turnover is a feature of Ales, Maziero, and Yared’s (2014) model of political

cycles. These authors approach political turnover as the outcome of a principal/agent contracting

problem (citizens as principal and the government as agent). Because the agent (government) has

6Aghion and Bolton (1990) is an early precursor that analyzed the role of default risk in a stylized partisan political
economy model.
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private information about the state of the budget, the optimal contract has the feature that after a

sequence of bad outcomes the contract is terminated and a new contract is entered into with a new

agent. Replacement of the government is, thus, endogenous and the logic is closely tied to those in

models of political control and retrospective voting (Barro (1973) and Ferejohn (1986)). But there

is no incumbency disadvantage.

Cycles in expenditure tied to exogenous shifts in parties occur in Dixit, Grossman, and Gul

(2000), Acemoglu, Golosov, and Tsyvinski (2011) and Aguiar and Amador (2011). In contrast

to us, these authors study self-enforcing equilibria supported by trigger strategies. Cuadra and

Sapriza (2008) and Hatchondo, Martinez, and Sapriza (2009), examine the implications of exoge-

nous political turnover for sovereign borrowing and default. In comparison to these sets of studies,

the probability of turnover is endogenous in our model.

Our results on the positive and normative implications of the costs of adjustments bear a

resemblance to equilibrium outcomes in legislative bargaining models with an endogenous status

quo (Bowen, Chen, and Eraslan (2014), Piguillem and Riboni (2015) and Dziuda and Loeper

(2016)). For instance, Bowen, Chen, and Eraslan (2014) show that mandated spending improves

the bargaining position of politicians out of power and leads to equilibrium outcomes closer to

the first best. The dynamic link created by mandated spending is analogous to the dynamic link

created by the costs of changing inherited policies in our model. However, an important reason

why this dynamic link matters in our model is because it endogenizes reelection probabilities. In

contrast, in Bowen, Chen, and Eraslan’s (2014) environment (and in environments of legislative

bargaining models in general) the probability of a legislator being chosen to propose a policy is

exogenously given and does not depend on the policies the legislator is expected to propose.

The paper is organized as follows. In Section 2, we present our empirical findings regarding

incumbency disadvantage. In Section 3, we develop the model outlined previously. In Section

4, we analyze a static version of the model to provide intuition for why policy inertia leads to

incumbency disadvantage. In Section 5, we explore the full dynamic model computationally —

the goal of this section is to show that analogs of the empirical findings reported in Section 2

can arise in the full equilibrium of the model and to understand the key factors that lead to this

result. In Section 6 and 7 we examine the positive and normative implications of policy inertia and

incumbency disadvantage, and Section 8 concludes. The Appendix gives the proof of existence of

5



pure strategy Markov perfect equilibrium for this class of models and gives an algorithm to compute

the (potentially discontinuous) Markovian decision rule of the dynamic game.

2 Incumbency Disadvantage in U.S. National Elections: 1954-2016

In this section we show that the incumbency disadvantage mentioned in the opening paragraph

manifests itself in the outcome of House elections. Examining House elections allows us to include all

national elections, as opposed to only presidential elections. We examine the electoral performance

of the two parties when the parties have held the presidency for specified lengths of time – six or

more years and eight or more years. Our aim is to establish that a long presidential incumbency

of a party leads to worse electoral outcomes for the party.7

We measure the electoral performance of parties in House elections by the Democratic lead in

the House (which can range from 0 to 435), denoted DL, and by the Democratic vote share lead in

House elections (which, in percentage points, can range from �100 to 100), denoted DVL. Figure

1 shows the time variation in these measures for all the election years since 1954.

Our main empirical specification is:

DL
t

or DV L
t

= �0 + �1SIX
+
t

+ �2(TWO+
t

·GR
t

).

Here SIX+
t

is a trichotomous variable that takes a value of 1 if, at the time of election, the presidency

has been held by a Democrat for 6 or more years, takes a value of �1 if the presidency has been held

by a Republican for 6 or more years, and takes the value 0 otherwise. If there is an incumbency

disadvantage, we expect �1 to be negative. A negative coe�cient implies that, after 6 years of a

Democratic presidency, the Democratic lead in the House falls, and, after 6 years of a Republican

presidency, the Democratic lead in the House increases. We also experiment with EIGHT+ which

takes the value 1 if the presidency has been held by Democrats for eight or more years and �1 if

it has been held by Republicans for eight or more years and 0 otherwise.

TWO+
t

· GR
t

is a control interaction variable, where TWO+
t

is a binary variable that takes a

value of 1 if the presidency was held by a Democrat in the preceding two or more years, and it

takes the value �1 if the presidency was held by a Republican in the preceding two or more years.

7In a presidential system such as in the U.S., the president’s party gets to set the policy agenda and, so, during
elections, we expect voters to vote against (or for) the members of the president’s party if they disapprove (or approve)
of the party’s current policies.

6



Figure 1:
Relative Electoral Performance of the Democratic Party, 1954-2016
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And, GR
t

is the average HP detrended (with smoothing parameter equal to 100) growth rate of

real GDP from the third quarter of t� 2 to the third quarter of t (because elections are held in the

fourth quarter). This interaction term takes into account that above-trend economic performance

in the inter-election period may be attributed to the success of policies of the presidential party

and, so, the presidential party gains more seats. If so, we expect �2 to be positive.

Tables 1 and 2 present our estimation results. The results pretty much speak for themselves.

Regardless of the measure of electoral performance or the specific length of duration of the presi-

dential incumbency of a party, a long incumbency is costly for the party. On average, if the party

has held the presidency for 6 or more years, it loses about 54 seats on a nondetrended basis and

about 37 seats on detrended basis. For the vote share lead, a long incumbency leads to a 5 to 6

percentage point decline in the vote share lead on a nondetrended basis and a 4 to 5 percentage

point decline on a detrended basis. Although this is not the focus of our paper, our results confirm

the common finding that good economic performance has a salutatory e↵ect on the election success

of the incumbent party. The statistical significance of all estimated coe�cients is high.

Table 1:
Presidential Incumbency of a Party and House Dem. Lead

Dep. Var. DL
Constant 37.6⇤⇤(17.9) 36.2⇤⇤(16.6) 38.7⇤⇤(17.7)
SIX+ �54.1⇤⇤⇤(12.2)
EIGHT+ �52.8⇤⇤⇤(13.0)
TWO+ ·GR 16.4⇤⇤(7.5) 14.6⇤⇤(7.0) 12.9⇤(7.0)
Adj. R2 0.28 0.39 0.22
S.D. Dep Var 63.2 63.2 63.2

Dep. Var. (detrended) DL DL DL
Constant �7.4(6.2) �8.8⇤(5.1) �7.3(5.5)
SIX+ �37.1⇤⇤⇤(6.3)
EIGHT+ �37.3⇤⇤⇤(8.2)
TWO+ ·GR 11.5⇤⇤⇤(2.5) 10.6⇤⇤⇤(2.2) 9.5⇤⇤⇤(3.2)
Adj. R2 0.31 0.54 0.33
S.D. Dep Var 38.4 38.4 38.4
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Table 2:
Presidential Incumbency of a Party and House Dem. Vote Share Lead

Dep. Var. DVL DVL DVL
Constant 3.5⇤⇤(1.4) 3.3⇤⇤(1.3) 3.7⇤⇤(1.5)
SIX+ �6.1⇤⇤⇤(0.8)
EIGHT+ �5.0⇤⇤⇤(1.0)
TWO+ ⇤GR 1.7⇤⇤(0.6) 1.6⇤⇤(0.6) 1.4⇤⇤(0.6)
Adj. R2 0.31 0.48 0.19
S.D. Dep Var 6.4 6.4 6.4

Dep. Var. (detrended) DVL DVL DVL
Constant �0.9(0.7) �1.1⇤(0.6) �0.8(0.7)
SIX+ �4.8⇤⇤⇤(1.0)
EIGHT+ �3.9⇤⇤⇤(1.1)
TWO+ ·GY 1.4⇤⇤⇤(0.3) 1.3⇤⇤⇤(0.2) 1.1⇤⇤⇤(0.4)
Adj. R2 0.27 0.52 0.21
S.D. Dep Var 5.0 5.0 5.0

3 Model

We build on Alesina and Tabellini’s (1990) influential model of two parties with di↵erent policy

preferences circulating in power. The main di↵erences are that election outcomes are determined

endogenously and policies change inertially. We denote one party by D and the other by R. We

assume that tax revenues are constant and given by ⌧ > 0. We use g 2 [0, ⌧ ] to denote the type

of expenditures preferred more by the D party and (⌧ � g) 2 [0, ⌧ ] as the type of expenditure that

is more preferred by the R party. Alternatively, g may be interpreted as the ideological stance of

policies in which case ⌧ represents the D end of the ideological spectrum and 0 represents the R

end. In what follows, g denotes the expenditures/policies inherited from the previous period and

g0 denotes the expenditures/policy chosen in the current period.

Each period starts with an election. Given the inherited policy g and an i.i.d. aggregate voter

preference shock A 2 R (the shock is explained in more detail below), let (g,A) be the indicator

function that takes the value 1 if the election is won by the D party and 0 if it is won by the R party.

Following an election, the party in power experiences an i.i.d. shock m 2 [m,m] that negatively

a↵ects the marginal utility from its preferred good (the higher the shock, the less urgency there is
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to spend on the party’s preferred good). The party in power then chooses g0 and all period payo↵s

are realized.

For j 2 {D,R}, let V
j

denote the value of party j when it is in power and by X
j

its value when

it is not in power. Then,

V
D

(g,m) =

max
g

02[0,⌧ ] and g

0+m�0
U(g0 +m) + ↵U(⌧ � g0)� ⌘

�

g0 � g
�2

+ �E(A0
,m

0)

2

4

(g0, A0)V
D

(g0,m0)+

[1� (g0, A0)]X
D

(g0,m0)

3

5

(1)

Here, U(c) is a continuous, strictly increasing and strictly concave function defined over c � 0,

0  ↵ < 1 and ⌘ (g0 � g)2, ⌘ > 0, is the cost of adjusting policies. Letting G
R

(g,m) denote the

policy of party R when it is in power, party D’s value when not in power is

X
D

(g,m) = U(g0) + ↵U(⌧ � g0)� ⌘
�

g0 � g
�2

+ �E(A0
,m

0)

2

4

(g0, A0)V
D

(g0,m0)+

+[1� (g0, A0)]X
D

(g0,m0)

3

5 (2)

s.t. g0 = G
R

(g,m) .

When the D party is not in power, it does not make any choices but must live with the choices

made by the R party.8

Symmetrically,

V
R

(g,m) =

max
g

02[0,⌧ ] and ⌧�g

0+m�0
↵U(g0) + U(⌧ � g0 +m)� ⌘

�

g0 � g
�2

+ �E(A0
,m

0)

2

4

(g0, A0)X
R

(g0,m0) +

[1� (g0, A0)]V
R

(g0,m0)

3

5 ,

(3)

8The preference shock m does not enter directly into the expressions for XD but it enters indirectly through how
the shock a↵ects the choices made by the R party.
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and

X
R

(g,m) = ↵U(g0) + U(⌧ � g0)� ⌘
�

g0 � g
�2

+ �E(A0
,m

0)

2

4

(g0, A0)X
R

(g0,m0) +

[1� (g0, A0)]V
R

(g0,m0)

3

5 (4)

s.t. g0 = G
D

(g,m) .

We assume that ⌧ +m > 0 so that the choice sets for both parties are nonempty for all m 2 [m,m].

Also, for our base case we assume that the adjustment costs of changing inherited policies are borne

equally by both parties. Later, we consider the case where adjustment costs are borne only by the

party in power and the case where there are no adjustment costs but there is a constraint on how

large policy changes can be in any period.

Next, we turn to the decision problem of voters that provides the underpinning of the election

outcome function (g,A). There is a continuum of voters. In terms of utility from g0 and ⌧ � g0,

half of them have the same preferences as the D party and the other half have the same preferences

as the R party. Voters di↵er from their a�liated party in two ways. First, they do not experience

the costs of changing policies borne by their representatives in government. Second, as mentioned

earlier, voters experience an aggregate preference shock A 2 R that is i.i.d. over time. In addition,

voters also experience an idiosyncratic preference shock that is independent across voters and also

i.i.d. over time, which we denote by e 2 R. It is assumed that EA = 0 and Ee = 0 and that

both shocks are symmetrically distributed around their means and that both a↵ect, additively, the

utility that a voter gets from party D being in power.9

For j 2 {D,R}, let W
j

be the value function of voters belonging to party j when their party is

in power, and let Z
j

be their value function when their party is out of power. Then,

W
D

(g,m, e, A) = U(g0) + ↵U(⌧ � g0) + e+A+ �E(e0,A0
,m

0)

2

4

(g0, A0)W
D

(g0,m0, e0, A0) +

[1� (g0, A0)]Z
D

(g0,m0)

3

5 (5)

s.t. g0 = G
D

(g,m) ,

9The fact that these shocks a↵ect preferences for the D party is without any loss of generality. As will become
clear below, voter preference for the R party will occur for negative values of e and A.
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and

Z
D

(g,m) = U(g0) + ↵U(⌧ � g0) + �E(e0,A0
,m

0)

2

4

(g0, A0)W
D

(g0,m0, e0, A0) +

[1� (g0, A0)]Z
D

(g0,m0)

3

5 (6)

s.t. g0 = G
R

(g,m) ,

The above recursions can be written more compactly. Observe that (5) implies W (g,m, e, A) =

W (g,m, 0, 0) + e+ A. Denoting W (g,m, 0, 0) by W (g,m) and then substituting W (g,m) + e+ A

for W (g,m, e, A) in (5) - (6) and using E(e0,A0
,m

0)e
0 = E

e

0e0 = 0 (the first equality follows from

independence of the shocks and the second from Ee = 0) yields:

W
D

(g,m) = U(g0) + ↵U(⌧ � g0) + �E(A0
,m

0)

2

4

(g0, A0) [W
D

(g0,m0) +A0] +

[1� (g0, A0)]Z
D

(g0,m0)

3

5 (7)

s.t. g0 = G
D

(g,m) ,

and

Z
D

(g,m) = U(g0) + ↵U(⌧ � g0) + �E(A0
,m

0)

2

4

(g0, A0) [W
D

(g0,m0) +A0] +

[1� (g0, A0)]Z
D

(g0,m0)

3

5 (8)

s.t. g0 = G
R

(g,m) ,

Proceeding symmetrically,

W
R

(g,m) = ↵U(g0) + U(⌧ � g0) + �E(A0
,m

0)

2

4

(g0, A0) [Z
R

(g0,m0) +A0] +

[1� (g0, A0)]W
R

(g0,m0)

3

5 (9)

s.t. g0 = G
R

(g,m) ,

and

Z
R

(g,m) = ↵U(g0) + U(⌧ � g0) + �E(A0
,m

0)

2

4

(g0, A0) [Z
R

(g0,m0) +A0] +

[1� (g0, A0)]W
R

(g0,m0)

3

5 (10)

s.t. g0 = G
D

(g,m) .
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At the time of an election, voters compute their individual net gain from voting for each party

and vote for the party for which this net gain is nonnegative. Since the value of m is realized

after the election, the individual net gain to a D party member from voting for his own party is

E
m

W (g,m)+ e+A�E
m

Z
D

(g,m) and the individual net gain for an R party member from voting

for the D party is E
m

Z
R

(g,m) + e+ A� E
m

W
R

(g,m). Given (g,A), these expressions determine

thresholds for the idiosyncratic shock, e
j

(g,A), j 2 {D,R}, above which a j party member will

vote for the D party in the election. Specifically,

e
D

(g,A) = �[E
m

W
D

(g,m)� E
m

Z
D

(g,m)]�A (11)

and

e
R

(g,A) = [E
m

W
R

(g,m)� E
m

Z
R

(g,m)]�A. (12)

In these threshold expressions, the terms in square brackets represent the expected net gain to

members of a party from their own party coming into power, ignoring all preference shocks. Holding

fixed A, the bigger the expected net gain term in (11), the lower the threshold e
D

and the bigger

the expected net gain in (12), the higher the threshold e
R

. Hence, the larger these expected net

gain terms, the more partisan voting will be. In contrast, an increase in A lowers both thresholds

and increases the fraction of voters in favor of the D party.

Theorem 1. Given W
j

and Z
j

, j 2 {D,R}, the election outcome function (g,A) has the following

step-function form:

(g,A) =

8

<

:

1 if A � A(g)

0 otherwise .
(13)

where

A(g) =
1

2
{[E

m

W
R

(g,m)� E
m

Z
R

(g,m)]� [E
m

W
D

(g,m)� E
m

Z
D

(g,m)]} . (14)

Proof. By definition of e
j

(g,A), j 2 {D,R}, the probability that a randomly selected voter will

cast his vote in favor of the R party is (1/2)F (e
D

(g,A) + (1/2)F (e
R

(g,A). In what follows, we

will assume that this expression also gives the fraction of voters who vote for the R party, given
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(g,A).10 Since this expression is decreasing in A, it follows that there is a unique value of A such

that exactly half of the voters vote for the D party. This cut-o↵ value of the aggregate shock,

denoted A(g), solves:,

1

2
F (e

D

(g,A(g))) +
1

2
F (e

R

(g,A(g))) =
1

2
,

or,

F (e
D

(g,A(g)) = 1� F (e
R

(g,A(g)). (15)

Since e is symmetrically distributed around 0, we may infer that at A(g), e
D

must equal e
R

in

magnitude, i.e., e
D

(g,A(g)) + e
R

(g,A(g)) = 0. Using (11) and (12) then gives:

A(g) =
1

2
{[E

m

W
R

(g,m)� E
m

Z
R

(g,m)]� [E
m

W
D

(g,m)� E
m

Z
D

(g,m)]} .

Thus, we have

(g,A) =

8

<

:

1 if A � A(g)

0 otherwise .

Theorem 1 implies that E
A

(g,A) = Prob[A � A(g)]. Thus, if the two expected net gain terms

in square brackets in (14) are equal in value then A(g) = 0 and, from the symmetry of the A

distribution, the probability of any party winning the election is one-half. If the net gain term for

D- party members is smaller than the net gain term for R-party members, then A(g) > 0 and (from

the symmetry of the A distribution) the probability of a D-party win is less than one-half.

It is worth commenting on the role played by the idiosyncratic shock e in the derivation of the

expression for A(g). To arrive at the recursions (7)-(10) that determine {W
j

, Z
j

}, the assumptions

needed on e were that e is independent of all other shocks and that Ee = 0. And the assumption

needed on e to go from (15) to the expression for A(g) is that e is distributed symmetrically around

10It is well understood that there is no “law of large numbers” that ensures this identification of probabilities as
fractions, when we are dealing with a continuum of voters (Judd (1985)). However, for our application it is fine to
simply assume that the “law” holds (see Feldman and Gilles (1985) and Uhlig (1996)).
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its mean and has unbounded support. Aside from these properties, the precise nature of the e

distribution does not matter for the determination of A(g).11

The equilibrium of the model is defined as follows:

Definition 1. A Markov Perfect Equilibrium (MPE) is a collection of party value and policy

functions V ⇤
j

(g,m), X⇤
j

(g,m), G⇤
j

(g,m), a collection of voter value functions W ⇤
j

(g,m), Z⇤
j

(g,m),

and an election outcome function ⇤(g,A) such that (i) given G⇤
⇠j

(g,m) and ⇤(g,A), the functions

V ⇤
j

(g,m), X⇤
j

(g,m) and G⇤
j

(g,m) solve (1) - (2) for j = D and (3) - (4) for j = R; (ii) given

G⇤
j

(g,m) and ⇤(g,A), the functions W ⇤
j

(g,m) and Z⇤
j

(g,m) solve (7) - (8) for j = D and (9) -

(10) for j = R; and (iii) given W ⇤
j

(g,m) and Z⇤
j

(g,m), j 2 {D,R}, the function ⇤(g,A) solves

(13) - (14).

In Section A, we establish the existence of MPE for a class of models which includes the base

model (and other models discussed later in the paper). In light of this, we have:

Theorem 2. If g (and, therefore, g0) is restricted to lie in a discrete subset of [0, ⌧ ] then under

mild regularity conditions, an MPE exists.

4 Policy Inertia and Incumbency Disadvantage in a Static Model

The basic idea underlying the key result of this paper — incumbency disadvantage — can be best

illustrated in a static model. Imagine that the economy has arrived into a “last” period with some

g. Our goal is to understand how the probability of a party winning the election varies with g.

For this illustration, we ignore the m shock and assume that ↵ = 0 and that U(g0) = �(⌧�g0)2.

Hence, U(⌧ � g0) = �(⌧ � (⌧ � g0))2 = �(g0)2. Thus, the D party’s ideal g0 is ⌧ , and the R party’s

ideal g0 is 0. Here g is best interpreted as an ideological stance, with ⌧ being the liberal end and 0

being the conservative end.

If the D party wins the election, it will choose g0 to maximize �(⌧ � g0)2 � ⌘(g � g0)2 subject

to g0 2 [0, ⌧ ]. This maximization implies

G
D

(g) =
1

1 + ⌘
⌧ +

⌘

1 + ⌘
g .

11This results from the feature that all payo↵s depend on the identity of the party in power only and not on the
party’s margin of victory in the election.
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The optimal decision is, thus, a convex combination of the D party’s ideal policy, ⌧ , and the

inherited policy g. We can verify that if the R party were to win, then

G
R

(g) =
⌘

1 + ⌘
g .

This optimal decision is also a convex combination of the R party’s ideal policy, 0, and the inherited

policy g. Thus, the lower ⌘ is, i.e., the smaller is the adjustment cost, the closer g0 is to the elected

party’s ideal policy.

The net gain to D party members from electing their own party over the R party is

�


⌘

1 + ⌘

�2

(⌧ � g)2 +

✓

⌧ � ⌘

1 + ⌘
g

◆2

+ e+A

and the gain to R party members from electing their own party over the D party is

�


⌘

1 + ⌘

�2

g2 +

✓

1

1 + ⌘
⌧ +

⌘

1 + ⌘
g

◆2

�A� e.

Then

e
D

(g,A) =



⌘

1 + ⌘

�2

(⌧ � g)2 �
✓

⌧ � ⌘

1 + ⌘
g

◆2

�A

and

e
R

(g,A) = �


⌘

1 + ⌘

�2

g2 +

✓

1

1 + ⌘
⌧ +

⌘

1 + ⌘
g

◆2

�A.

Thus the threshold level of A above which the D party wins (given by the A value for which

e
D

(g,A) + e
R

(g,A) = 0) is:

A(g) =
2⌘⌧

(1 + ⌘)2
(g � ⌧/2) . (16)

When ⌘ > 0, the sign of A(g) depends on the sign of g � ⌧/2. If g is closer to the ideal choice

of the D party, then A(g) is positive, which means that the probability of the D party winning

the election is less than 1/2. Furthermore, the probability of a D-party victory falls with g. These

results stem from the fact that the symmetry of adjustment costs makes it equally costly to move
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away from the inherited policy in either direction (toward ⌧ or toward 0). However, if g is closer

to ⌧ than 0, then, by diminishing marginal utility, the expected gain to members of the D party

from electing their own party will be smaller than the expected gain to members of the R party

from electing their own party. This same logic applies in reverse if g is closer to 0 than to ⌧ : the

likelihood of the R party winning the election would then be less than 1/2.

The result that the likelihood of a D party victory falls with g is echoed in how the fraction of

people voting for the D party varies with g. As can be verified by direct di↵erentiation, the rate of

change of both e
D

(g,A) and e
R

(g,A) with respect to g is given by 2[⌘/(1 + ⌘)2]⌧ , which is strictly

positive for ⌘ > 0. Since the fraction voting for the D party is 1�(1/2)[F (e
D

(g,A))+F (e
R

(g,A))],

the fraction declines with g.

These results are consistent with an incumbency disadvantage if we expect that g will be closer

to ⌧ (to 0) when the D party (R party) has been in power for some time.

The expression in (16) shows that A(g) will be zero and, so, there will be no incumbency

disadvantage (with respect to likelihood of a win) under two sets of circumstances. First, A(g) = 0

if g = ⌧/2. This is the case where the inherited g is halfway between the ideal choices of the two

parties, and so, given the symmetry in preferences and adjustment costs, the expected net gain

from electing one’s own party is the same for D and R party members.

Second, A(g) = 0 for all g if ⌘ = 0 or if ⌘ = 1. If ⌘ = 0, there are no adjustment costs and the

winning party implements its ideal policy regardless of g. Again, given the symmetry in preferences,

the net gain from electing one’s own party is the same for D and R party members. If ⌘ = 1,

adjustment costs are infinite so g0 = g regardless of which party is elected. The expected net gain

from electing one’s own party over the other party is thus 0, and therefore the same, for members of

both parties. These properties suggest that when g > ⌧/2, the functional relationship between A(g)

and ⌘ has an inverted-U shape as shown in Figure 2 (the figure assumes ⌧ = 1 and g = 0.75). As ⌘

increases from zero, even if the R party comes into power, the resulting policies remain relatively

close to what D party members prefer and, so, D party members are more likely to defect and vote

for the R party and, hence, there is an increase in A(g). As ⌘ increases further, policies respond

less to a change in leadership and cross-voting by members of both parties increases. However, the

e↵ect is greater for R party members (since initially there were not cross voting very much), which

works to mute the increase in A(g). For this model A(g) peaks at ⌘ = 1 and then begins to decline.
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Figure 2:
Cost of Adjustment and the A Cut-o↵ for a D Party Win
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5 Incumbency Disadvantage in the Dynamic Model

The static model discussed in the previous section gave the basic intuition for why incumbency

disadvantage arises in our model. The result depends on voters recognizing that the winning party

will move policy toward its own ideal and that voters whose ideal policy is closer to the inherited

g don’t care as much about this movement (and, therefore, are more likely to be swayed by other

idiosyncratic factors in their voting). But since the game ended after g0 was chosen, neither party

took into account that by moving policy toward its ideal policy it might adversely a↵ect its chances

of reelection in the future. When elections happen every period, it is not obvious that an incumbent

party will act in a way that generates a disadvantage for itself in future elections.

In this section our goal is to show not only that incumbency disadvantage can arise in the

dynamic model but to show that the model is capable of delivering the observed magnitude of this

e↵ect. Given the quantitative nature of our goal, the demonstration proceeds by choosing a realistic

parametrization of the model and examining the relevant properties of the computed MPE. As part

of our goal to understand why incumbents act the way they do, we highlight the key roles played

by policy inertia and uncertainty in election outcomes in generating incumbency disadvantage.
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To proceed with the quantitative analysis, we adopt some parametric assumptions. We assume

that U(g) = g1��/[1 � �], the idiosyncratic shock e has a normal distribution with 0 mean, and

the aggregate shock A as well as the party preference shock m have zero mean uniform (hence,

symmetric around 0) distributions. Turning to parameter values, since national elections happen

every two years, the value of � is set to 0.92, which corresponds to an biennial discount rate of 8

percent. The value of � is set to 2, a standard value in the macroeconomics literature. The value

of ⌧ is normalized to 1. Since we don’t observe large shifts in expenditure patterns when parties

controlling the presidency change, ↵ is set conservatively to 0.90 — this implies that voters’ static

optimum is to have their party spend 51.3 percent of the total budget on their preferred good.

The remaining parameters, namely, ⌘ and the dispersions of the distributions of A, e and m,

have important e↵ects on the magnitude of the incumbency disadvantage in the model. Of these,

the dispersion of m is special in that its size also governs the speed with which we can converge

to an equilibrium in our computations. Conditional on the settings of the other parameters, the

speed drops as the standard deviation of m is lowered. Experimentation showed that a standard

deviation of around 3 percent is large enough to ensure quick convergence to an equilibrium for a

range of parameter values. Thus the support of m was set to ±0.05.

Conditional on the setting of the dispersion of m and the parameters listed earlier, experimenta-

tion also showed that the model can deliver the observed magnitude of the incumbency disadvantage

for a range of values of the remaining three parameters. Among the many constellations of parame-

ter values we could pick to be consistent with the observed magnitude of incumbency disadvantage,

we chose the one in which ⌘ is 5, the standard deviation of e is 0.02, and the support of (the

uniformly distributed) A is ±0.01.

These parameter choices are summarized in Table 3.

To confirm that the model generates incumbency disadvantage, Table 4 reports the results of

regressions run on model-generated data that mimic the regressions reported in the top panel of

Table 2. The dependent variable is the D party’s vote share lead (i.e., the percentage of the total

vote cast in favor of the D party minus and the percentage of votes cast for the R party) and the

explanatory variables are trichotomous variables that take on the values +1, �1, or 0 depending on

whether the D party has been in power for 3 or more (or 4 or more) model periods, or the R party

has been power for 3 or more (or 4 or more) model periods, or neither. For comparison purposes,
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Table 3: Parameter Selections

Parameter Description Value

� Curvature of utility function 2.00
� Biennual discount factor 0.92
⌧ Total government exp. 1.00
↵ Weight given to other party’s desired public good 0.90
m Support of party preference shock, ±m 0.05
⌘ Adjustment cost parameter 5
�
e

S.D. of idiosyncratic voter preference shock 0.02
A Support of aggregate voter preference shock, ±A 0.01

we also record the outcome of the same regression with probability of a D victory as the dependent

variable.

Table 4: Incumbency Disadvantage

Model
Dep. Var. %D-%R %D-%R Prob. of D Win Prob. of D Win

Constant 0.00 0.00 0.50 0.50
SIX+ �5.00 - �0.07 -
EIGHT+ - �5.00 - �0.07

The first two columns in Table 4 report the magnitude of the incumbency disadvantage in the

model for both six or more years and eight or more years of incumbency (in the model, these

correspond to 3 or more periods or 4 or more periods). For either measure of incumbency, the

incumbency disadvantage is 5 percentage points. The next two columns report the incumbency

disadvantage in terms of decline in the probability of reelection. For either measure of incumbency,

the decline in the reelection probability is 7 percentage points. We also confirmed that adjustment

costs remain central to incumbency disadvantage in the full dynamic setting: If we set ⌘ = 0 and

run the same regressions on the model output as in Table 4, the coe�cients on the incumbency

variables are all estimated to be zero.

5.1 Role of Election Uncertainty

As we have seen (and argued via the static example) inertia in policies is a necessary condition

for incumbency disadvantage. However, it is not su�cient: There must be su�cient uncertainty in

election outcomes as well. The reason is that there are two o↵setting forces at work: Moving policy

toward its own ideals increases the incumbent’s current payo↵ but it also increases the likelihood
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that the party will be voted out of power in the next election. The latter e↵ect is weakened if

the aggregate voter preference shock is su�ciently volatile, for then there is a good chance the

incumbent will retain o�ce despite moving policy toward its own ideals. This attenuation allows

the first force to dominate and leads to incumbency disadvantage.

We can confirm this logic by studying what happens if elections become perfectly predictable,

i.e., there are no aggregate voter preference shocks and A = 0 always. Figure 3 shows one 30-period

segment of a long simulation of the baseline model with variance of A set to zero. In the Figure,

the magenta dots record which party is in power in any given period: When the D party (R party)

is in power, the dots are above (below) 0.5. For convenience, dots are placed at 0.513 and 0.487,

the values of g that D party and R party members, respectively, would most prefer if there were

no costs to changing policies.12 The solid line shows the path of g (since ⌧ = 1, g can be thought

of the portion of spending that is allocated to the preferred good of the D party). It shows that

the incumbent party either keeps policy stable at 0.5 or indulges the preferences of the other party

and once in a while moves policy strongly toward its constituents’ ideal policy and then goes out

of power.

Figure 3:
Predictable Elections and Expenditures
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12Since voters do not experience the m shock, the statically ideal expenditure on the voter’s preferred good is
always 0.513. In terms of g, the ideal expenditure of D and R party members is 0.513 and 1� 0.513, respectively.
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A closer look at the path of g reveals that when the D party (R party) is in power then it shades

its policies toward the ideal policy of the R party (D party) by choosing g0 below 0.5 (above 0.5)

until the period in which it moves policy strongly toward ⌧ (toward 0). Thus, the optimal strategy

of the incumbent is to compromise during “normal” times by picking an expenditure pattern that is

more preferred by constituents of the other party until the time when the gain from moving policy

toward its preferred good overwhelms the loss from electoral defeat in the next election. This occurs

when m is su�ciently low (i.e., the marginal utility from it preferred good is su�ciently high).

The key implication of this behavior is that once a party comes into power it stays on until a

large enough shock occurs to make it want to respond and relinquish power. Since large shocks

occur infrequently, reelection is the norm rather than the exception. Indeed, if we run the same

regression on model output as we did for the baseline model, we find that the probability of

reelection conditional on having been in power for six or more (or eight or more) years is 0.64 (in

contrast to 0.43 in the baseline model) as shown in Table 5. Thus, when election outcomes are

perfectly predictable, incumbency does not predict disadvantage. However, note that incumbency

disadvantage, as measured by vote share lead, is still present. This e↵ect is entirely the result

of policies swinging strongly toward the incumbent’s ideal right before the incumbent goes out of

power.

Table 5: Election Uncertainty

Base model var(A) = 0
Dep. Var. %D-%R Prob. of D Win %D-%R Prob. of D Win

Constant 0.00 0.50 0.00 0.50
SIX+ �5.00 �0.07 �2.70 0.14

To summarize: In the dynamic model an incumbent has the opportunity to move policy toward

its ideal policy. If the connection between today’s policy choice and tomorrow’s election outcome

is rendered weak by a volatile A shock, the incumbent will utilize the opportunity to move policy

toward its ideal and risk losing the election next period. If elections become very predictable, the

incumbent will delay utilizing the opportunity until such time it is very valuable to do so. The

equilibrium will display incumbency disadvantage in the former case only.
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5.2 Role of Policy Inertia

A positive ⌘ introduces inertia in policies and creates a dynamic link between periods. A conse-

quence is that a party’s long-run ideal policy, namely, the average composition of spending toward

which it tends as its incumbency lengthens, deviates from its no-inertia ideal policy, i.e., its average

policy when ⌘ = 0.

Figure 4 charts, for di↵erent values of ⌘, the relationship between the average expenditure

(over a long simulation) on the preferred good of the incumbent party against the party’s years

of incumbency. The blue dotted line is the long-run ideal policy, corresponding to ⌘ = 0 case.

As the line shows, the party immediately goes to its long-run ideal and the line is flat at 0.513.

The solid black line immediately below corresponds to our base model with ⌘ = 5. For the base

model, the average expenditure is initially below its long-run level of 0.512 but reaches that level

(essentially) by the sixth year of incumbency and stays flat thereafter. As ⌘ is increased, the long-

run expenditure level shifts down and the years of incumbency needed to converge to the ideal

level lengthens. As seen in the shape of the red dashed line (⌘ = 50) and the green dashed line

(⌘ = 200), policies start out closer to 0.50 and continue to move up even beyond the eighth year of

incumbency.

Figure 4:
Incumbency and Average Expenditure on the Preferred Good
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Figure 5:
Incumbency and Average Lead in Elections
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These expenditure dynamics have implications for the time path of incumbency disadvantage.

Figure 5 plots the average percentage of voters who cast their ballots in favor of the incumbent

minus the percentage who don’t. There is no incumbency disadvantage when ⌘ = 0 and the dotted

blue line is flat at zero. For the base model, the di↵erence is about �3 percentage points at the end

of two years of incumbency and the di↵erence continues to drop until it (essentially) stabilizes at

�5 percentage points by the sixth year of incumbency. Interestingly, the incumbency disadvantage

is stronger for ⌘ = 50 than for ⌘ = 200: The red dashed line is everywhere below the green dashed

line. This ordering echoes the inverted-U shape of A(g) function shown for the static model (Figure

2). In the full dynamic model as well, A(g) is initially increasing in ⌘ but then it falls. Notice also

that the red dashed line crosses the solid black line and the incumbency disadvantage for ⌘ = 50

and ⌘ = 5 is roughly similar for incumbency of 4 years. However, unlike the ⌘ = 5 case, the ⌘ = 50

case has incumbency disadvantage declining strongly all the way to 12 years of incumbency. Since

this is not the pattern we see in the data, the model “identifies” a relatively small value of ⌘ as the

correct parameter for matching the pattern of incumbency disadvantage documented in Table in 2.
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5.3 Alternative Models of Inertia

In this section we show that incumbency disadvantage also occurs for other models of inertia that

may seem plausible. For this we examine two alternative models. In the first alternative there is a

quadratic cost of adjustment just as in the base model but the costs of adjustment are borne only

by the party in power. In the second alternative, there is no cost of adjustment but there is an

upper bound on how much policies can change (in either direction) in any period (we call this the

constraint-on-change model)

The first point is that the pattern of incumbency disadvantage documented in Table 2 can be

accounted for by any of these alternative models of inertia. Figure 6 plots the average lead in

elections for the two alternative models along with the base model. The predicted relationships are

virtually identical. Indeed, regressions on the simulated output from any of these models implies

incumbency disadvantage of about 5 percentage points after six (eight) years of incumbency. The

one-sided adjustment cost model can account for the pattern for ⌘ = 2.8 and the constraint-on-

change model can account for it by setting the constraint at 0.05 units of g.

Figure 6: Alternative Models of Inertia
Incumbency and Average Lead in Elections
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However, the alternative models imply something quite di↵erent about the long-run ideal policy

of each party. In contrast to the base model, the long-run ideal policies are more extreme than the
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Figure 7: Alternative Models of Inertia
Incumbency and Expenditure on the Preferred Good
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static ideal policy of their party members, as shown in Figure 7. Because of inertia, the incumbent

pushes beyond the static ideal policy of its party members to assure them policies “close” to their

static ideal even when it is out of power and the other party is choosing policies. Thus, inertia can

explain why parties throw their weight behind extreme policies. Interestingly, this extremism does

not arise in the base model because the costs of changing policies are borne by all representatives

in government. Since an incumbent anticipates the swing back in policy in future periods — and

the costs associated with that reversal — it becomes more circumspect about pushing for policies

that depart too far from the ideal policies of the other party.

Next we turn to the welfare implications of inertia. Policy inertia and the implied incumbency

disadvantage mean that the composition of government spending exhibits cycles. When the D

party comes into power, it typically inherits a g that is generally below its ideal level because it

tends to win elections precisely when the composition of spending has strayed significantly from

its ideal composition. Upon getting into power, it works to reverse the shift in composition that

occurred during the previous R party reign. Figure 8 shows one 30-period segment (from a long

simulation of the baseline model) that captures this pattern particularly well.

These spending composition cycles impose a welfare cost on voters in that there is a path of g

and a path for the governing party that delivers a higher utility to each voter, ex ante. This is the
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Figure 8:
Political Expenditure Cycles
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path in which g0 is constant at 0.50 and the party favored by the aggregate shock (i.e., the D party

if A
t

> 0 and the R party, otherwise) is elected. For this policy, the mean lifetime utility, averaged

over both types of voters and over all possible values of the shocks A and e, solves the following

recursion:

W = [1 + ↵]U(0.5) + E
A {A�0}A+ �W,

where we have used the fact that E(A,m) {A�0}[A+e] = E
A {A�0}A, and that the fraction of voters

of each type is one-half. In contrast, starting with an initial g of 0.5, the analogous voter welfare

expression for equilibrium policies is:

WEQ =
1

2



E
m

W
D

(0.5,m) + E
m

Z
R

(0.5,m)

2

�

+
1

2



E
m

Z
D

(0.5,m) + E
m

W
R

(0.5,m)

2

�

+ E
A {A�0}A,

where we have used the fact that A(0.5) = 0 and, so, E
A

(0.5, A) = 0.5.

Table 6 reports the value of [(W �WEQ)/W]⇥ 100, in ascending order, for di↵erent levels and

models of inertia. Observe that equilibrium welfare never exceeds W. Predictably, the welfare loss

is zero for large ⌘ since g stays constant at 0.5. For ⌘ = 50, the welfare loss is two-tenths of a
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percentage point and the standard deviation of g is 0.08. For the base model, the welfare loss is

seven-tenths of a percentage point and the standard deviation of g is 0.12.

Table 6:
Welfare Implications of Policy Inertia

Models Welfare Loss in % Std. Dev of g0

⌘ = 50000 0.00 0.00
⌘ = 50 0.02 0.08
Base Model 0.07 0.12
⌘ = 2.8 for party in power 0.12 0.13
⌘ = 0 0.15 0.14
⌘ = 0 but |�g| < 0.05 0.18 0.14

As is to be expected, the welfare loss in the base model is less than the loss for ⌘ = 0 model.

Recall that in the base model, the long-run ideal policy of the parties is less dispersed relative to the

no-inertia model. Thus, inertia works to reduce fluctuations in g by slowing down the movement

of policies toward the long-run targets and by bringing the targets closer to 0.5. Interestingly, the

welfare loss for the model where the costs of adjustment are borne only by the party in power

is also less than the no-inertia model even though the long-run ideal policies are further apart

than the no-inertia model counterparts. The welfare loss is attenuated because inertia and the

resulting incumbency disadvantage serve to keep realized policies close to 0.5. For the constraint-

on-change model, the extremism of the long-run policies win out and welfare loss is greater than in

the no-inertia model.

6 Policy Inertia and Median Voter Logic without Pre-Election Commitment

Downs (1957) famously observed that if politicians care only about winning elections, policies

enacted will converge to the one most preferred by the median voter. Alesina (1988) pointed out

that if parties also care about the policies they enact and cannot commit to policies before an

election, then equilibrium policy will be the one that the winning party most prefers, regardless

of how motivated the party is to win the election. In other words, the inability to commit can

completely short-circuit the moderating influence of o�ce motivation.

Here we show that inertia and prospective voting can reintroduce median voter logic even

wherein there is pre-election commitment to policies. For this we extend the base model to include a

utility benefit enjoyed by the political party when it is in power. Specifically, the period utility from

being in power for the D party is U(g0)+↵U(⌧ � g0)�⌘(g0� g)2+B, where B > 0. Symmetrically,
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the period utility from being in power for the R party is ↵U(g0) +U(⌧ � g0)� ⌘(g0 � g)2 +B. The

constant B is a stand-in for the o�ce motivation of the representatives seeking election.

We confirm Alesina’s result for the no-inertia version this model.

Theorem 3 (Alesina 1988). If there are no adjustment costs or constraints on changing policies,

parties choose their statically ideal policies regardless of the value of B.

Proof. If ⌘ = 0, g is no longer payo↵-relevant and, so, its value cannot a↵ect equilibrium outcomes.

Thus A⇤(g) and G⇤
j

(g,m), j 2 {D,R}, are independent of g but, potentially, dependent on B.

Assume that the former is A⇤(B) and the latter are G⇤
j

(m,B). Then, the continuation value of

party D when it is power is

Pr[A � A⇤(B)]{E
m

V ⇤
D

(m0, B) + E
A

[A|A � A⇤]}+ [1� Pr[A < A⇤]]{E
m

X⇤
D

(m0, B)}

Since this continuation value is independent of g, once party D is elected the best it can do is solve

its static optimization problem. Thus,

G⇤
D

(m,B) = argmax
g

02[0,⌧ ]U(g0 +m) + ↵U(⌧ � g0) +B

which is evidently independent of B. Symmetrically, the R party will choose its statically ideal

policy, independent of the value of B. As a corollary, one may verify that when the two parties act

in this way, the net gain terms within square brackets in (14) are equal and, so, A⇤(B) ⌘ 0 and the

probability of reelection is 1/2 regardless of B.

This result changes when ⌘ > 0. With inertia, the presence of B creates a conflict of interest

between representatives and their constituencies: Upon electoral defeat, the party loses B and the

prospect of this loss restrains the party from pushing as hard for its constituents as it otherwise

would. We confirm this in Figure 9. The top panel plots the average equilibrium value of g0 against

the number of years of incumbency for the baseline model and the model with o�ce motivation.

For this graph, we assume that the initial g = 0.5. The graph shows that as the D party comes

into power and continues in power, the average g rises for both models. However, the rise in g0 for

the base model is more pronounced than in the model with o�ce motivation. Figure 10 plots the
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average lead of the party in power as incumbency progresses. The average lead falls in both cases,

but the decline is less pronounced for the model with o�ce motivation.

Figure 9:
O�ce Motivation, Incumbency and Average Expenditure on the Preferred Good
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Interestingly, although o�ce motivation creates a conflict of interest between the party and

its constituents, the welfare implications of o�ce motivation for the constituents is positive. This

is because o�ce motivation reduces the amplitude of the policy cycles discussed in the previous

subsection. Table 7 reports the welfare loss from the stable g benchmark (i.e., relative to W) for

the base model and the base model augmented with o�ce motivation. Observe that the standard

deviation of g0 is lower and the welfare loss is smaller with o�ce motivation than without.

Table 7: Welfare and O�ce Motivation

Models Welfare Loss in % Std. Dev of g0

Base Model 0.07 0.12
Base Model with B = 0.9 0.05 0.10
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Figure 10:
O�ce Motivation, Incumbency and Average Lead in Elections
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7 Summary

In this paper, we documented a strong pattern of incumbency punishment in U.S. national politics.

Postwar evidence of the electoral performance of the two parties in House elections shows that

a long presidential incumbency of a party leads to substantial decline in the popularity of the

party in national elections. We used Alesina and Tabellini’s (1990) model of partisan politics,

extended to have elections with prospective voting, to explain this finding. We showed that costs

of changing policies, or simply constraints on how much policies can change from one period to the

next, combined with uncertainty in election outcomes, can generate incumbency disadvantage.

We examined the implications of policy inertia for how parties choose policies. We showed that

inertia can cause parties to target policies that are more extreme than the policies they would

support in the absence of inertia and that such extremism can be welfare reducing. On the other

hand, inertia implies that o�ce motivation matters for policy choice, even when there is no pre-

election commitment to policies, and this can dampen policy cycles and raise welfare.

31



APPENDIX

The goal of this appendix is to provide a secure computational foundation for models with

endogenous reelection probability. We establish that there is at least one pure strategy Markov

Perfect Equilibrium for a class of models that includes all the models discussed in the main text

and, potentially, other models of interest. The two main assumptions needed to obtain this result

are that there is a finite number of possible states and that there is a continuously distributed shock

to primitives that a↵ects the optimal choice in any given state.

Because of nonconvexities that may arise from strategic interactions, MPE of the type of game

analyzed in this paper cannot, in general, to be shown to possess continuous decision rules. This

lack of continuity, in turn, implies nondi↵erentiability of continuation value functions. Thus, com-

putational methods that rely on interpolation of functions of continuous variables are ill-suited

for this class of models. Given this, these types of models are best solved on a grid. But if the

state space is discrete, a focus on pure strategy equilibria is problematic because standard theory

guarantees the existence of mixed strategy equilibria only. The role of the continuously distributed

shock to primitives (the m shock in the main model) is to allow mixing when it is called for in

equilibrium: When a player is very close to being indi↵erent between two actions, the realization

of the shock determines which action is chosen.13

However, the presence of this continuously distributed shock poses a challenge for computation

because the equilibrium decision rule may fail to be continuous with respect to this shock as well.

Since this shock cannot be put on a grid without compromising existence, we need to be able to

compute the optimal decision for all values of the shock (given a value of the other discrete state).

In this regard, if it is the case that for any two feasible actions there is at most one value of the

shock for which the two actions give the same payo↵, then an algorithm exists — described in detail

in the Appendix B — to compute the equilibrium decision rule to any arbitrary precision.

A Existence a Pure Strategy Markov Perfect Equilibrium

A.1 A General Environment

Probability Spaces :

13In this sense, the continuously distributed shock to primitives plays the same role as the additive payo↵ pertur-
bations introduced in Harsanyi (1973) to purify mixed strategies.
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If X ✓ R, B
X

is the Borel �-algebra on R restricted to X. Let M = [m,m] be a closed interval

in R and let (M,B
M

, µ) denote the probability space for the preference shock m.

Assumption 1. µ is absolutely continuous with respect to the Lebesgue measure on M .

The assumption means that any subset of M that is of Lebesgue measure 0 will have probability

zero with respect to the probability measure µ. Any probability measure that is described by a

continuous density on M will satisfy this assumption.

Let (R,BR,�) denote the probability space for the aggregate voter preference shock A.

Assumption 2. For all a 2 R,
R

A>a

Ad� exists and is continuous in a and there is a � > 0 such

that |
R

A>a

Ad�| < �.

For the proof of existence, it is not necessary to assume that A has compact support, only that

all truncated integrals exist, vary continuously with the truncation point and be bounded. These

assumptions would be satisfied if A possessed a continuous density over a compact support but

would also be satisfied if it possessed a continuous density over R as long as the density converged to

0 exponentially fast as a diverged to ±1 (as is the case, for instance, with the Normal distribution).

Let (R,BR, ") denote the probability space for the idiosyncratic voter preference shock e and

let F (e) = "(�1, e]) be its distribution.

Assumption 3.

R

R ed" = 0, "((�e, 0]) = "([0, e)) for all e 2 R and F (e) is continuous and strictly

increasing in e.

Any density function that is symmetric around 0 and strictly positive for all e 2 R will satisfy this

assumption (such as the Normal distribution). The assumption implies the following result:

Lemma 1. If F (e0) = 1� F (e) then e0 = �e.

Proof. First, we show that e0 and e cannot both be strictly positive or strictly negative. Suppose,

to get a contradiction, that e0, e > 0. By symmetry around zero, F (e0) = 1/2 + "((0, e0]) and

F (e) = 1/2+ "((0, e]). Since F (e) is strictly increasing in e, both "((0, e0]) and "((0, e0]) are strictly

positive. But, F (e0) = 1 � F (e) implies "((0, e0]) = �"((0, e]), a contradiction. The proof that e0

and e cannot both be negative is analogous.
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Assume, then, that e0  0 and e � 0. By symmetry around 0, F (e0) = 1 � F (e) implies

F (e0) = "((�1, 0]) + "(�1, 0]) � F (e). Hence, F (e0) � "((�1, 0]) = "((�1, 0]) � F (e). Since

e0  0, the l.h.s. of this equality is �"((e0, 0]) and since e � 0 the r.h.s. is �"([0, e)). Hence we

have that "((e0, 0]) = "([0, e)). Now, fix e. By symmetry we know that "((e0, 0]) = "([0, e)) holds

for e0 = �e. Since F (e) is strictly increasing in e, it follows that it can hold only for e0 = �e.

States and Actions:

Let I = {1, 2, . . . , I} be the set of possible endogenous states the economy can be in at the start

of any given period and let �k

i

✓ I be the set of states that can be selected as a state for the next

period given that the current state is i and the current party in power is k. We will use i and j to

denote generic elements of I and �k

i

, respectively. We call {i, j, k} a feasible triple if j 2 �k

i

.

Assumption 4. �k

i

6= ; for all i 2 I and all k 2 {D,R}.

That there is a feasible selection for every possible endogenous state is a mild requirement.

The fact that I contains only endogenous states is not restrictive. The proof of existence can be

straightforwardly extended to include any number of discrete shocks that a↵ect feasible sets. The

same is true for the computation method. A more important restriction embodied in the definition

of �k

i

is that these sets are una↵ected by the realization of m. In our application, M = [�0.05, 0.05]

and restriction can be met by requiring that g0 2 (0.05, 0.95). Then g0 +m and ⌧ � g0 +m will be

strictly positive for all g0, no matter what value of m is realized.

Current period rewards:

Uk

i, j

(m) : I ⇥ �k

i

⇥ M ! R, k 2 {D,R}, denotes the current period reward to party k when

party k is in power, the state is i, the preference shock is m and j 2 �k

i

is the chosen state for the

next period. And Uk

i, j

: I ⇥ �⇠k

i

! R, denotes the current period reward to party k when party

⇠ k is in power, the state is i and j 2 �⇠k

i

is the state chosen for the next period.

Assumption 5. Uk

i j

(m) is continuous in m.

The assumption is unremarkable but helps to establish the first part of the following result.

Lemma 2. There exists U > 0 such that |Uk

i j

(m)| < U for all feasible triples {i, j, k} and all m

and |Uk

i j

| < U for all feasible triples {i, j,⇠ k}.
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Proof. Since M ⇢ R is compact, Assumption 5 ensures that for any feasible triple {i, j, k} there

exist Bk

i j

 Uk

i j

(m)  B
k

i j

. Then |Uk

i j

(m)|  Bk

i j

⌘ max{|Bk

i j

|, |Bk

i j

|}. Let B1 be the maximum

over all these individual Bk

i j

s. Let B2 be the maximum of |Uk

i j

| over all feasible triples {i, j,⇠ k}.

The Lemma follows by setting U > max{B1, B2}.

Assumption 6. Let {i, j, k} and {i, j0, k} be a pair of feasible triples and let fM = {m 2 M :

Uk

i j

(m)� Uk

i j

0(m) = 0}. Then fM either empty or contains a finite number of points.

Assumption 6 ensures that party k can be indi↵erent between any two feasible choices for next

period’s state for only a finite number of m. This assumption, together with Assumption 1, plays a

key role in ensuring the continuity of the self-map whose fixed points are MPE. In our application

this assumption is satisfied by virtue of the fact that Uk

i j

(m) is di↵erentiable and concave in m (see

the discussion following Assumption 8 below).

Let uk
i j

denote the current period reward to a k-party member if j is chosen when the state is

i. Our notation assumes that the identity of the party choosing j does not matter for the utility

derived from j (of course, the utility derived could be di↵erent for D party and R party members).

However, if party D is in power the utility flow uk
i j

is augmented by e+A for both D and R party

members.

Assumption 7. |uk
i j

| is less than U for all k, i and j 2 �k

i

.

This is an assumption of convenience only. The fact that the bound is the same as in Lemma 2

does not restrict uk
i j

since U can be set large enough to also serve as a bound for individual utility

flows.

In what follows, we use some standard definition and results from measure theory and functional

analysis. In most instances, the proofs or discussions of these results can be found in Stokey and

Lucas Jr. (1989) and when this is the case, we cite the relevant section of their text.

A.2 Decision Problem of Parties

The timing of events is the same as in the main text. The period begins in some state i chosen in

the previous period. The voter preference shocks e and A are realized and people vote. Following

the election, the preference shock m of the party in power is realized and the party chooses the

next period’s state j. All period rewards are realized and the period closes.
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Let Qk

i

2 R, k 2 {D,R}, denote the continuation value of party k of starting a period when the

state is i.

Let A
i

2 R be the value of A above which the D party wins the election when the state is i.

Let
i

(A) be the step function that takes the value 1 if A � A
i

and 0 otherwise.

Let ! 2 R3I denote
�

A
i

, QD

i

, QR

i

�

, i 2 I. We will use the notation A
i

[!], Qk

i

[!] etc, to denote

specific components of !.

Let V k

i j

(m;!) : I ⇥ M ⇥ R3I ! R be the value to party k when it is in power and chooses j

given state i and preference shock m. Then,

V k

i, j

(m;!) = Uk

i, j

(m) + �Qk

j

[!], k 2 {D,R}. (17)

Let V k

i

(m;!) : I ⇥M ⇥ R3I ! R be the optimal value of party k under the same circumstances.

Then,

V k

i

(m;!) = max
j2�k

i

V k

i, j

(m;!) (18)

Since I is a finite set, by Assumption 4 the set of maximizers is nonempty. Let jk
i

(m;!) : I ⇥M ⇥

R3I ! I, k 2 {D,R}, denote the maximizer if it is unique, or, if the set of maximizers contains

more than one element, the smallest member of I that attains V k

i

(m;!) (this is just a tie-breaking

rule).

Proposition 1 (Monotonicity and Continuity of V k

i

). V k

i

(m;!) is strictly increasing in ! and it

is continuous in both m and !.

Proof. That V k

i

(m;!) is strictly increasing in ! follows from the fact that for each i, the objective

function is trivially strictly increasing in ! (holding m constant). To prove continuity with respect

to m and !, observe that given i, V k

i

(m;!) is the upper envelope of the a finite number of functions

V k

i, j

(m;!) : M ⇥ ⌦ ! R, j 2 �k

i

. By Assumption 5, Uk

i j

is continuous in m and Qk

j

[!] is trivially

continuous in ! and, so, each of these #(�k

i

) functions is continuous in m and !. It follows that

V k

i

(m;!) is continuous in m and !.

Proposition 2 (Integrability of V k

i

). For each !, V k

i

(!) ⌘ E
m

V k

i

(m;!) exists.
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Proof. Since V k

i

(m;!) is continuous in m, V k

i

(m;!) is measurable with respect to B
M

[SL, Ch. 7,

p.178]. Since M is closed interval in R (and therefore compact), inf
m

V k

i

(m;!) and sup
m

V k

i

(m;!)

both exist. Then there is some V (!) > 0 for which | V k

i

(m;!) |< V (!). Therefore V k

i

(m;!)

is a bounded and measurable function and, since µ(M) is finite (equal to 1),
R

V k

i

(m;!)dµ =

E
m

V k

i

(m;!) exists [SL, Ch. 7, p. 192].

Lemma 3 (Maximizers are almost always unique). Given !, V k

i, j

k
i (m;!)

> V k

i, j

0(m;!) for j0 6=

jk
i

(m;!), except, possibly, for a finite number of m values.

Proof. Let j, j0 2 �k

i

and let Mk

i

(j, j0;!) ✓ M be the set of m values for which V k

i, j

(m;!) =

V k

i, j

0(m;!). By Assumption 6, Mk

i

(j, j0;!) is either empty or contains a finite number of points.

Let

M(!) =
[

k2{D,R}

8

<

:

[

i2I

8

<

:

[

j, j

02�k
i

Mk

i

(j, j0;!)

9

=

;

9

=

;

be the collection of all such (indi↵erence) points. Since I is a finite set, M(!) is a finite set. Now

consider m̂ 2 M \M(!). Then V k

i, j

k
i (m̂;!)

> V k

i, j

0(m̂;!) for any j0 6= jk
i

(m̂;!). If not, m̂ must belong

to Mk

i

(jk
i

(m̂;!), j0;!) for some j0 and, so, must belong to M(!), which is impossible in view of the

choice of m̂. Since M \M(!) contains all but a finite number of m values, the lemma follows.

Proposition 3 (Almost everywhere convergence of decision rules). Let {!
n

} be a sequence con-

verging to !. Then, for each i and k, the sequence of functions {jk
i

(m;!
n

)} converges pointwise to

jk
i

(m;!) except, possibly, for a finite number of m values.

Proof. Pick a point in m̂ 2 M and suppose that jk
i

(m̂;!) is a unique maximizer. Let V k�
i

(m̂;!) =

max
j2�k

i \jki (m̂;!) V
k

i j

(m̂;!). Then, V k

i

(m̂,!) > V k�
i

(m̂;!). Since both V k�
i

(m̂;!) and V k

i

(m̂;!)

are each continuous in !, there exists N such that for all n > N , V k

i

(m̂;!
n

) > V k�
i

(m̂;!
n

). Then

jk
i

(m̂;!
n

) = jk
i

(m̂;!) for all n > N . But this implies that lim
n

jk
i

(m̂,!
n

) = jk
i

(m̂,!). Since the

maximizer jk
i

(m;!) is unique for all but a finite number of m’s, the lemma follows.

Definition 2. Let {B
j

2 B
X

}, j = 1, 2, . . . N be disjoint, measurable sets. Then f : X ! R is a

simple function if

f(x) =
N

X

j=1

✓
j

�
Bj (x).
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where ✓
j

2 R and �
Bj (x) is an indicator function that takes the value 1 if x 2 B

j

and 0 otherwise.

If {B
j

} is also a partition of X, the r.h.s. is called the standard representation of f [SL, Ch. 7, p.

179] .

Definition 3. Let (X,B
X

, ⌫) be a probability space and let f(x) : X ! R be as in Definition 1

and suppose that {B
j

2 B
X

}, j = 1, 2, . . . N , is a partition of X. By the definition of the Lebesgue

integral,

E
x

f(x) =

Z

f(x) d⌫ =
N

X

j=1

✓
j

Z

�
Bj (x)d⌫ =

N

X

j=1

✓
j

⌫(B
j

).

Proposition 4 (Decision rules are simple functions of m). There exists {Bk

j

(!)}, j 2 I, such that

Bk

j

(!) 2 B
M

, Bk

j

(!) \Bk

j

0(!) = ;, [
j2IBk

j

(!) = M and

jk
i

(m;!) =
X

j2I
j · �

B

k
j (!)

(m). (19)

Proof. Fix k. For each j 2 I, let

V k

i\j(m;!) = max
j

02I\j
V k

i, j

0(m;!)

denote the optimal value of party k excluding policy j. Now consider the di↵erence function

fk

i j

(m;!) : M ! R defined as V k

i j

(m;!)�V k

i\j(m;!). Then j is the unique maximizer for m (given

k, i, and !) if and only if fk

i j

(m;!) > 0. Let Bk

i j

(!) = {m 2 M : fk

i j

(m;!) > 0} be the set of m

points for which j is the unique maximizer. Since fk

i j

is the di↵erence of two functions continuous

in m, fk

i j

is continuous in m and, hence, Bk

i j

(!) 2 B
M

. Next, consider the finite set of m values

with nonunique maximizers. For each m in this set, determine the value of the smallest maximizer.

If this value is j, assign m to Bk

i j

(!). Then:

• Bk

i j

(!) 2 B
M

(since any finite subset of M is a Borel set and the union of two Borel sets is

Borel)

• Bk

i j

(!) \ Bk

i, j

0(!) = ; (since an m with a unique maximizer cannot appear in two di↵erent

Bk

j

(!)’s and nonunique maximizers are assigned to exactly one Bk

j

(!) ) and

• [
j2IBk

i j

(!) = M (by Lemma 3, all but a finite number of m’s have unique maximizers and so

must appear in some Bk

i j

(!); if m has nonunique maximizers then it has a smallest maximizer

– call it j – and m must belong to Bk

i j

(!))
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Finally, to show that (19) holds, suppose jk
i

(m;!) = j. If j is a unique maximizer then m 2 Bk

i j

(!);

if it is a nonunique maximizer it must be the smallest such maximizer by definition of jk
i

(m;!)

and, therefore, m 2 Bk

i j

(!) as well. Hence the r.h.s. of (19) is equal to j.

Corollary 1 (Continuity of decision rules almost everywhere). jk
i

(m;!) is continuous in m except,

possibly, at a finite number of points.

To complete the statement of the party’s decision problem we note the value to party k when

party ⇠ k is choosing policy. Let Xk

i

(m;!) : I ⇥M ⇥ R3I ! R be the value to party k when the

inherited policy is g
i

, and continuation values are given by ! and party ⇠ k is choosing its optimal

policy. Then,

Xk

i

(m;!) = Uk

i j

(⇠k)
i (m;!)

+ �Qk

j

(⇠k)
i (m;!)

[!], k 2 {D,R}. (20)

We may easily verify that Xk

i

(m;!) is a simple function of m with the following standard repre-

sentation:

Xk

i

(m;!) =
X

j

n

Uk

i j

+ �Qk

i j

[!]
o

�
B

⇠k
i j (!)(m) k 2 {D,R}. (21)

Proposition 5 (Integrability of Xk

i

). For each !, Xk

i

(!) ⌘ E
m

Xk

i

(m;!) exists.

Proof. Follows directly from Definition 2.

A.3 Lifetime Utilities of Voters

The value functions of voters satisfy the following recursions:

WD

i

(m;!) = (22)

uD
j

D
i (m;!) + �E

A

0

h

j

D
i (m;!)

�

A0;!
�

[E
m

0WD

j

D
i (m;!)(m

0;!) +A0] +
h

1�
j

D
i (m;!)

�

A0;!
�

i

E
m

0ZD

j

D
i (m;!)(m

0;!)
i

,

ZD

i

(m;!) = (23)

uD
j

R
i (m;!) + �E

A

0

h

j

R
i (m;!)

�

A0;!
�

[E
m

0WD

j

R
i (m;!)(m

0;!) +A0] +
h

1�
j

R
i (m;!)

�

A0;!
�

i

E
m

0ZD

j

R
i (m;!)(m

0;!)
i

,

39



and

WR

i

(m;!) = (24)

uR
j

R
i (m;!) + �E

A

0

h

j

R
i (m;!)

�

A0;!
�

[E
m

0ZR

j

R
i (m;!)(m

0;!) +A0] +
h

1�
j

R
i (m;!)

�

A0;!
�

i

E
m

0WR

j

R
i (m;!)(m

0;!)
i

,

ZR

i

(m;!) = (25)

uR
j

D
i (m;!) + �E

A

0

h

j

D
i (m;!)

�

A0;!
�

[E
m

0ZR

j

D
i (m;!)(m

0;!) +A0] +
h

1�
j

D
i (m;!)

�

A0;!
�

i

E
m

0WR

j

D
i (m;!)(m

0;!)
i

.

Proposition 6. Let F denote the set of all B
M

-measurable functions f : M ! R for which
R

f dµ

exists with respect to the probability space (M,B
M

, µ). Then, for each ! 2 R3I there exists a set of

functions
�

W k

i

(m;!), Zk

i

(m;!)
 

, i 2 I, all members of F , that satisfy the recursions (22) - (23)

for k = D and (24) - (25) for k = R.

Proof. We will prove the proposition for k = D (the proof for k = R is analogous). Observe that for

each i and !, the r.h.s. of (22) can be viewed as an operator that takes as inputs a set of functions

(WD(m), ZD(m)) ⌘
⇣

{WD

j

(m), ZD

j

(m)}
j2I

⌘

and returns a single function WD

i

�

WD, ZD

�

(m). If

the input functions are members of F then their expectation w.r.t. to m exists. Denote these

expectations by {WD

j

, Z
D

j

}
j2I . Then,

WD

i

�

WD, ZD

�

(m) = uD
j

D
i (m;!)+

�

2

4Pr
h

A0 > A
j

D
i (m;!)[!]

i

W
D

j

D
i (m;!) +

Z

A

0
>A

jDi (m;!)
[!]

A0 d�+
h

1� Pr[A0 > A
j

D
i (m;!)[!]]

i

Z
D

j

D
i (m;!)

3

5 .

where the truncated expectation terms involving A0 exist by virtue of Assumption 2. We may

verify that the r.h.s. of the above equation can be expressed as a simple function (in standard

representation form):

WD

i

�

WD, ZD

�

(m) =

X

j2I

"

uD
j

+ �

"

Pr
⇥

A0 > A
j

[!]
⇤

W
D

j

+

Z

A

0
>Aj [!]

A0 d�+
�

1� Pr
⇥

A0 > A
j

[!]
⇤�

Z
D

j

##

�
B

D
i j(!)

(m)
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Hence WD

i

�

WD, ZD

�

(m) 2 F . Taking expectations with respect to m then yields

W
D

i

�

WD, ZD

�

=

X

j2I

"

uD
j

+ �

"

Pr
⇥

A0 > A
j

[!]
⇤

W
D

j

+

Z

A

0
>Aj [!]

A0 d�+
�

1� Pr
⇥

A0 > A
j

[!]
⇤�

Z
D

j

##

µ
�

BD

i j

(!)
�

Observe that W
D

i

(WD, ZD) depends on the input functions WD(m) and ZD(m) only through the

expected values (w.r.t. m) of these functions. Therefore, the recursion can be reduced to a recursion

in expected values only. Namely,

WD

i

(W
D

, Z
D

) =

X

j2I

"

uD
j

+ �

"

Pr
⇥

A0 > A
j

[!]
⇤

W
D

j

+

Z

A

0
>Aj [!]

A0 d�+
�

1� Pr
⇥

A0 > A
j

[!]
⇤�

Z
D

j

##

µ
�

BD

i j

(!)
�

,

where (with a slight abuse of notation) we continue to use WD

i

(· , ·) to denote the new operator

that takes in a vector of expected values and returns an expected value.

Analogously,

ZD

i

(W
D

, Z
D

) =

X

j2I

"

uD
j

+ �

"

Pr
⇥

A0 > A
j

[!]
⇤

W
D

j

+

Z

A

0
>Aj [!]

A0 d�+
�

1� Pr
⇥

A0 > A
j

[!]
⇤�

Z
D

j

##

µ
�

BR

i j

(!)
�

.

We may verify easily that the operator:

⇣

WD

i

(W
D

, Z
D

), ZD

i

(W
D

, Z
D

)
⌘

i2I
: R2I ! R2I

satisfies Blackwell’s su�ciency conditions for a contraction map (with modulus of contraction �).

Since R2I is a complete metric space (with, say, the uniform metric), there exists a unique pair of

vectors (W
⇤D

, Z
⇤D

) satisfying

⇣

W
⇤D

, Z
⇤D
⌘

=
⇣

WD

i

(W
⇤D

, Z
⇤D

), ZD

i

(W
⇤D

, Z
⇤D

)
⌘

i2I
.
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Then the functions, all members of F , whose existence is asserted by the Proposition are given by:

WD

i

(m;!) =
X

j2I

"

uD
j

+ �

"

Pr
⇥

A0 > A
j

[!]
⇤

W
⇤D
j

+

Z

A

0
>Aj [!]

A0 d�+
�

1� Pr
⇥

A0 > A
j

[!]
⇤�

Z
⇤D
j

##

�
B

D
i j(!)

(m)

ZD

i

(m;!) =
X

j2I

"

uD
j

+ �

"

Pr
⇥

A0 > A
j

[!]
⇤

W
⇤D
j

+

Z

A

0
>Aj [!]

A0 d�+
�

1� Pr
⇥

A0 > A
j

[!]
⇤�

Z
⇤D
j

##

�
B

R
i j(!)

(m).

Proposition 7 (Continuity of W
⇤k

and Z
⇤k

with respect to !). The fixed points (W
⇤k
, Z

⇤k
),

k 2 {D,R}, vary continuously with !.

Proof. We will prove this for (W
⇤D

, Z
⇤D

) (the proof for k = R is entirely analogous). Since the

operator
�

WD

i

(· , ·), ZD

i

(· , ·)
�

i2I is a contraction, it is su�cient to show that it is continuous in !

(see, for instance, Theorem 4.3.6 in Hutson and Pym (1980)). That is, given the vectors (W
D

, Z
D

),

the image
⇣

WD

i

(W
D

, Z
D

), ZD

i

(W
D

, Z
D

)
⌘

varies continuously with ! for any i. We will show this

for WD

i

(W
D

, Z
D

) (the proof is analogous for ZD

i

(W
D

, Z
D

)).

From inspection, the image will vary continuously with ! if, for each j, (i) Pr [A0 > A
j

[!]]

and (ii) µ
⇣

BD

i j

(!)
⌘

vary continuously with !. (i) follows from Assumption 2. For (ii), observe

that µ (B
i j

(!) =
R

�[jDi (m;!)=j]dµ. Let !
n

be a sequence converging to !. By Proposition 3,

�[jDi (m;!n)=j] converges pointwise to �[jDi (m;!)=j] except, possibly, for a finite number of m values.

Since a set composed of a finite number of m has Lebesgue measure 0, by Assumption 1 the

probability measure of a finite number of points is also 0. Hence, lim
n

�[jDi (m;!n)=j] = �[jDi (m;!)=j]

µ� a.e. By the Lebesgue Dominated Convergence Theorem, lim
n

µ
⇣

BD

i j

(!
n

)
⌘

= µ
⇣

BD

i j

(!)
⌘

.

A.4 Equilibrium Mapping

Define T (!) : R3I ! R3I to be the mapping:

QD

i

[T (!)] = E(A,m)

⇥

i

(A;!)V D

i

(m;!) + [1�
i

(A;!)]XD

i

(m;!)
⇤

QR

i

[T (!)] = E(A,m)

⇥

i

(A;!)XR

i

(m;!) + [1�
i

(A;!)]V R

i

(m;!)
⇤

A
i

[T (!)] =
[E

m

WR

i

(m;!)� E
m

ZR

i

(m;!)]� [E
m

WD

i

(m;!)� E
m

ZD

i

(m;!)]

2
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Then, a fixed point of T constitutes a Markov perfect equilibrium. We will show that there is a

compact subset ⌦ ✓ R3I such that T (⌦) ✓ ⌦ and T (!) : ⌦ ! ⌦ is continuous.

To proceed, use the independence of A and m to re-express the mapping as:

QD

i

[T (!)] = Pr [A > A
i

[!]] · V D

i

(!) + Pr [A  A
i

[!]] ·XD

i

(!)

QR

i

[T (!)] = Pr[A > A
i

[!]] ·XR

i

(!) + Pr[A  A
i

[!]] · V R

i

(!)

A
i

[T (!)] =
1

2

h

[W
⇤R
i

(!)� Z
⇤R
i

(!)]� [W
⇤D
i

(!)� Z
⇤D
i

(!)]
i

To establish the existence of ⌦, suppose that Qk

i

2 [�U/(1� �), U/(1� �)] for all i, k. Then,

| V k

i j

(m;!) |  | Uk

i j

(m) | +� | Qk

j

|< U + �U/(1� �) = U/(1� �).

Therefore, V k

i

(m;!) 2 [�U/(1��), U/(1��)] and, so, E
m

V k

i

(m) = V k

i

2 [�U/(1��), U/(1��)].

The same line of reasoning shows Xk

i

2 [�U/(1 � �), U/(1 � �)]. Thus, if Qk

i

[!] 2 [�U/(1 �

�), U/(1� �)] then Qk

i

[T (!)] 2 [�U/(1� �), U/(1� �)].

To establish a bound for A
i

[T (!)], we first show that W
⇤k

and Z
⇤k

are each contained in

[�(U + �)/(1 � �), (U + �)/(1 � �)]I . Observe that if W
k

and Z
k

belong in [�(U + �)/(1 �

�), (U +�)/(1� �)]I then

| W k

i

(W
k

, Z
k

) |< U + �[(U +�)/(1� �) +�] < U +�+ �[(U +�)/(1� �)] = (U +�)/(1� �),

and, analogously, | Zk

i

(W
k

, Z
k

) |< (U +�)/(1��). Since the map
⇣

W k

i

(W
k

, Z
k

), Zk

i

(W
k

, Z
k

)
⌘

i2I
is a contraction, the fixed points W

⇤k
and Z

⇤k
must each lie in [�(U+�)/(1��), (u+�)/(1��)]I .

Given these bounds, we may verify that A
i

[T (!)] 2 [�(U + �)/(1 � �), (U + �)/(1 � �)] for all

i. Since this bound holds for any (A
i

[!])
i2I , we have, in particular, that if (A

i

[!])
i2I 2 [�(U +

�)/(1� �), (U +�)/(1� �)]I then (A
i

[T (!)])
i2I 2 [�(U +�)/(1� �), (U +�)/(1� �)]I .

Thus, we may take ⌦ to be the hypercube [�!,!]3I , where ! = [U +�]/(1� �).

To establish that T (!) is continuous in ! 2 ⌦ we need only show that Qk

i

[T (!)] is continuous

in ! for k 2 {D,R} (since by Proposition 7 we know that W
⇤k
(!) and Z

⇤k
(!) are continuous in

! and, hence, A
i

[T (!)] is continuous in !). To establish this, we need to establish that V k

i

(!) =
R

V k

i

(m;!) dµ is continuous in !. Let !
n

be a sequence in ⌦ converging to ! 2 ⌦. By Proposition
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1, V k

i

(m;!
n

) converges to V k

i

(m;!) pointwise for all m 2 M . Since | V k

i

(m;!
n

) |< U/(1� �), by

the Lebesgue Dominated Convergence Theorem the lim
n

R

V k

i

(m;!
n

) dµ =
R

V (m,!) dµ. Hence

V k

i

(!) is continuous in !.

Since T (!) : ⌦ ! ⌦ is continuous and ⌦ is compact, by Brouwer’s FPT there exists !⇤ such

that T (!⇤) = !⇤. Hence the existence of pure strategy MPE is assured.

B Computation of Decision Rules

In this section we describe how, given k, i and !, we compute the function jk
i

(m;!) : M ! I. We

strengthen Assumption 6 to:

Assumption 8 (At most one indi↵erence point). For any pair {j, j0} 2 I, there is at most one

value of m for which V k

i, j

(m;!) = V k

i, j

0(m;!).

The assumption is satisfied in our application. To see this, let k = D and define �(m) =

V D

i, j

(m;!)� V D

i, j

0(m;!). Then, d�(m)/dm = U 0(g
j

+m)�U 0(g
j

0 +m). Since u is strictly concave,

d�(m)/dm is either strictly positive for all m or strictly negative for all m. Hence �(m) can cross

0 only once. An analogous argument establishes the result for k = R.

The following definition of weakly preferred sets is useful.

Definition 4 (Weakly Preferred Sets). Given k, i, m and !, P k

i j

(m;!) ⇢ I is the weakly preferred

set of j at m if and only if j0 2 P k

i j

(m;!) implies V k

i j

0(m;!) � V k

i j

(m;!).

The following lemma plays an important role in speeding up the computation.

Lemma 4 (Dominated Choices). Let m  m1 < m2  m. Let j⇤ = jk
i

(m1;!). Then any

j 2 I \ P k

ij

⇤(m2;!) is weakly dominated by j⇤ for all m 2 [m1,m2].

Proof. Suppose there is some m 2 (m1,m2) for which there is an action j0 2 I \ P k

i j

⇤(m2;!)

such that V k

i j0
(m;!) > V k

i j⇤(m;!). First, notice that j⇤ is always a member of P k

ij

⇤(m2;!). Since

V k

i j

⇤(m1;!) � V k

i j0
(m1;!) (definition of j⇤) and V k

i j

⇤(m2;!) > V k

i j0
(m2;!) (by definition of j0), it

follows that there must be m̂ 2 [m1,m) and another m̃ 2 (m,m2) for which V k

i j0
(m̂;!) = V k

i j

⇤(m;!)

and V k

i j0
(m̃;!) = V k

i j

⇤(m̃;!). But this contradicts Assumption 8. Hence, V k

i j

⇤(m;!) � V k

i j0
(m;!)

for all m 2 [m1,m2], with the equality holding, possibly, only at m1.
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The algorithm proceeds as follows. To begin, separately sort V k

i j

(m;!) and V k

i j

(m;!) with

respect to j in descending order. Let j⇤ be the highest-ranked action in the first list and j
⇤
be the

highest-ranked action in the second list. Set jk
i

(m;!) = j⇤.

The Initial Step:

Case 1: j⇤ = j
⇤
= j⇤. Then, by Lemma 4, j⇤ strictly dominates all other actions for all m 2 (m,m].

Hence, jk
i

(m;!) = j⇤ for all m 2 (m,m] and we are done.

Case 2: j⇤ 6= j
⇤
and P k

i j

⇤(m;!) (the weakly preferred set of j⇤ at m) contains only two elements.

Then, use bisection to determine the unique m1 2 (m,m) for which V k

i j

⇤(m1;!)� V k

i j

⇤(m1;!) = 0

and set

jk
i

(m;!) =

8

>

>

>

>

>

<

>

>

>

>

>

:

j⇤ for m 2 (m,m1)

min{j⇤, j⇤} for m = m1

j
⇤

for m 2 (m1,m]

and we are done.

Case 3: j⇤ 6= j
⇤
and P k

i j

⇤(m;!) contains n � 3 elements, denoted {j⇤, j2, . . . , jn�1, j⇤}. Then,

use bisection to determine the indi↵erence points {m
j

⇤ ,m2,m3, . . . ,mn�1} at which V k

i j

⇤(m
s

;!) =

V k

i js
(m

s

;!), s 2 {j⇤, 2, 3, . . . , n � 1}. Let m̃ be the minimum of this set of indi↵erence points and

let j̃ be the corresponding action. Then,

jk
i

(m;!) =

8

>

>

>

>

>

<

>

>

>

>

>

:

j⇤ for m 2 (m, m̃)

min{j⇤, j̃} for m = m̃

2 P k

i j

⇤(m;!) \ j⇤ for m 2 (m̃,m]

.

The top branch follows because j⇤ is the best choice at m and m̃ is the first m for which some

other choice, namely j̃, gives the same utility as j⇤; the middle branch follows from our tie-breaking

convention; and the bottom branch follows because by Lemma 4, j̃ dominates j⇤ for all m > m̃.

The Recursive Step:

If the algorithm reaches Case 3, it returns to the Initial Step with m = m̃ and j⇤ = j̃. Note that

it is legitimate to treat j̃ as a best choice at m̃ because j̃ gives the same utility as j⇤ at m̃ and
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j⇤ strictly dominates every other choice at m̃ (recall, again, that m̃ is the first m for which an

action indi↵erent to j⇤ is encountered). Each return to the Initial Step adds a new m segment

of the decision rule. Also, with each return to the Initial Step there is at least one less action to

evaluate (for instance, P k

i j̃

(m;!) does not contain j⇤) so the algorithm is guaranteed to deliver the

full decision rule in a finite number of steps.

Some remarks about the algorithm. First, for each k, i and !, the algorithm requires two

initial sorts of V k

i

(m;!) — one for m = m and one for m = m. For each subsequent return to

the Initial Step, no further sorting is necessary because we know that j̃ is a best action at m̃ and,

since V k

i j

⇤(m;!) is already sorted, we merely need to locate the position of j̃ in the sorted vector

to determine P k

ij̃

(m;!).

Second, if P k

i j

⇤(m;!) has n elements, the maximum number of thresholds calculated is (n �

1 + n � 2 + . . . + 1) = (n2 � n)/2. This is a maximum because a return to the Initial Step could

eliminate more than one choice. For instance, an action that is in P k

i j

⇤ \ {j⇤, j̃} may not be in P k

i j̃

.

In any case, the number of thresholds calculated grows polynomially in n.14

Third, it is possible to speed up the algorithm by utilizing a property of the model which, while

somewhat special, may hold in other applications as well. The property is that V k

i j

can be expressed

as a sum of two terms: one that depends monotonically on j and m only and a second term that

depends on i and j but is independent of m. Specifically,

V D

i j

(m;!) = u(g
j

+m) +BD

i j

(!) where BD

i j

(!) = ↵u(⌧ � g
j

)� ⌘(g
i

� g
j

)2 + �QD

j

[!]

and

V R

i j

(m;!) = u(⌧ � g
j

+m) +BR

i j

(!) where BR

i j

(!) = ↵u(g
j

)� ⌘(g
i

� g
j

)2 + �QR

j

[!].

Since g
i+1 > g

i

(by assumption), the first component is strictly increasing in j for k = D and

strictly decreasing in j for k = R, regardless of any given value of m. Focusing for the moment

on the k = D case, this implies that for an action j to be not dominated by an action j0 > j,

BD

i j

(!) > BD

i j

0(!). If this inequality is violated then j is strictly dominated by j0 for all m and, so,

14The size n depends positively on the number of discrete choices available at each k, i and ! (generally, this
depends on the grid size of the state space) and negatively on the width of the support of m (a narrow support means
that m ⇡ m and, so, the ranking of js for V k

i j(m;!) will be quite similar to the ranking for V k
i j(m;!).
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can be dropped from further consideration. Thus, by examining the ordering of Bk

i j

(!) over j it is

often possible to prune the set of choices the algorithm has to consider.

Finally, there is a property of jk
i

(m;!) which holds for our model and which may hold in other

applications as well. We do not use this property in the computation but its existence serves as

a check on the results. This is the property of monotonicity of jk
i

(m;!) with respect to m: For

m0 > m, jD
i

(m;!)  jD
i

(m0;!) and jR
i

(m;!) � jR
i

(m0;!). The proof follows easily from the

concavity of u and we omit it.
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